Shaft Wall Systems
Walls that enclose elevator shafts, stairwells and other vertical shafts are the lifeline of a building. Should a fire occur, firefighters control the use of elevators, leaving stairwells as the only means for occupant egress or rescue within the building. Since these walls are an important part of the building, they must have the strength to withstand lateral loads and provide needed fire protection.
This brochure explains:
- What a shaft wall system comprises
- The different applications where shaft wall systems can be used
- How to select and specify the appropriate components of a shaft wall system

| Pages | Understand Your System | 4 | Overview
Applications
Components
Performance Testing |
|-------|-------------------------|---|----------------------------------|
| | Select Your System | 14| Performance Selector
Limiting Heights
Solid Shaft Wall
Limiting Spans |
| | Design Your System | 21| Design Details
Good Design Practices |
| | Specify Your System | 33| Application Guide Specifications |
| | For More Information | | Technical Service
800 USG.4YOU |
| | | | Websites
usg.com
usgdesignstudio.com |
USG shaft wall systems are non-loadbearing gypsum wall partition assemblies constructed from outside the shaft at each floor. Shafts are enclosed early in construction, and the walls are finished later, along with interior partitions. Installation is quick and easy, using components and application procedures familiar to drywall contractors. This system installs faster than other multilayer gypsum panel systems because it is installed from one side, leaving the shaft free of scaffolding. The assemblies are constructed of gypsum liner panels friction-fitted into C-H studs in a progressive manner, with gypsum panels, gypsum fiber panels or cement board applied to the face.
Use USG shaft wall systems to construct elevator shafts, mechanical shafts, stairwells, air return shafts and horizontal membranes. These shafts are vital for vertical communication, power, water, fresh air, exhaust and a means of egress.

Walls

Intermittent Air Pressure Loads

- **Elevator shafts**
 Ideal for elevator shafts since the walls can be constructed from one side, leaving the shaft free of scaffolding. This allows elevator equipment to be installed simultaneously.

- **Stair shafts**
 Accommodates stair shafts by allowing both sides of the wall to be finished when required. For added abuse resistance in stairwells, face layer panels can be substituted with FIBEROCK abuse-resistant panels.

Sustained Pressure Loads

- **Mechanical shafts**
 Vertical HVAC piping and ductwork can easily be contained within the system, as well as allowing for wall penetrations when required.

- **Air shafts (unlined)**
 The system can also be used for vertical air shafts within the building. Shafts can be unlined when specific conditions are met. Unlined shaft walls can accommodate sustained air pressure up to 10 psf.
Walls

<table>
<thead>
<tr>
<th>Solid Shafts</th>
<th>Horizontal Stud Shafts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Solid shafts are normally used in areas where a small section of shaft wall is needed for a single vertical pipe penetration. The solid shaft is structurally limited to a height of 12 feet, since the system has no studs.

For certain applications, equipment limitations sometimes make it difficult to install shaft liner panels and studs vertically. This is true for walls separating shafts when there is only a structural beam provided for supporting the wall.

Ceilings

<table>
<thead>
<tr>
<th>Shaft Wall Ceiling Membrane</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

The system can also be installed horizontally when a horizontal fire-rated membrane is required. For one- and two-hour fire ratings refer to ICC Evaluation Report NER-258 or Progressive Engineering Report AER-09038.
USG shaft wall systems have been comprehensively tested for fire resistance ratings only when all of the system components are used together. Substitutions of any of the components are not recommended and are not supported by USG. Refer to the appropriate product material safety data sheet for complete health and safety information.

Gypsum Liner Panels

Sheetrock® Brand Gypsum Liner Panels
- High-performance panels have a noncombustible core encased in a water-resistant 100% recycled green face and back paper
- Underwriters Laboratories (UL)/Underwriters Laboratories Canada (ULC) Classified for fire resistance
- Panels are 1” thick and 24” wide with beveled edges
- Refer to product submittal sheet WB2278 for more information

Sheetrock® Brand Mold Tough™ Gypsum Liner Panels
- High-performance panels have a noncombustible and moisture- and mold-resistant gypsum core enclosed in a moisture- and mold-resistant, 100% recycled blue face and back paper
- UL/ULC Classified as to fire resistance
- Panels are 1” thick and 24” wide with beveled edges
- Refer to product submittal sheet WB2389 for more information

Sheetrock® Brand Glass-Mat Liner Panels
- High-performance panels have a noncombustible and moisture- and mold-resistant gypsum core enclosed in a moisture- and mold-resistant glass mat on both sides
- Can be left exposed for up to 12 months
- UL/ULC classified as to fire resistance
- Panels are 1” thick and 24” wide with beveled edges
- Refer to product submittal sheet WB2483 for more information

Gypsum Panels and Cement Board

Sheetrock® Brand Firecode® Core Gypsum Panels
- All of the advantages of regular panels with additional resistance to fire
- Available in 5/8” thickness, 4’ width
- Refer to product submittal sheet WB1473 for more information

Sheetrock® Brand Firecode® C Core Gypsum Panels
- Provide improved fire resistance over standard Firecode panels because of additives that enhance integrity of the core under fire exposure
- Available in 5/8” and 1/2” thicknesses, 4’ width
- Refer to product submittal sheet WB1473 for more information
Components

Sheetrock® Brand Mold Tough™ Firecode® Core Gypsum Panels
- Panels have a noncombustible, moisture- and mold-resistant gypsum core encased in a moisture- and mold-resistant, 100% recycled green face and brown back papers
- Tapered long edges for easy finishing
- Available in 5/8” thickness, 4’ width
- 5/8” panels are UL Classified for fire resistance
- Refer to product submittal sheet WB2390 for more information

Sheetrock® Brand Ultracode® Core Gypsum Panels
- 3/4”-thick panels require fewer layers of gypsum panels in approved designs when used with steel studs and mineral wool insulation
- Available in 4’ width
- Refer to product submittal sheet WB2167 for more information

Sheetrock® Brand Mold Tough™ Ultracode® Core Gypsum Panels
- 3/4” panels have a noncombustible moisture- and mold-resistant gypsum core encased in moisture- and mold-resistant green face and brown back papers
- UL Classified as to fire resistance, surface-burning characteristics and noncombustibility
- Refer to product submittal sheet WB2388 for more information

Durock® Cement Board
- Water-durable, mold-resistant substrate for high-moisture areas
- Refer to product submittal sheet CB399 for more information

Fiberock® Abuse-Resistant Interior Panels
- Resist denting, breaking and puncturing, even in high-traffic areas
- Excellent fire resistance
- Made from 95% recycled materials
- Refer to product submittal sheet F102 for more information

Fiberock® Aqua-Tough™ Interior Panels
- Used only for wall designs
- Increased resistance to abrasion, indentation and penetration
- Made from 95% recycled materials
- Refer to product submittal sheet F134 for more information

Imperial® Firecode® Core and Firecode® C Core Gypsum Base
- Large size, rigid base for fire-rated gypsum veneer plaster systems
- Designed for direct or resilient attachment to wood or steel framing
- Multilayered laminated face paper to control water absorption and resist sag
- Refer to product submittal sheet P790 for more information
Steel Framing

USG Steel J-Runner (JR)

- **Style**: JR
- **Design Thickness**: 0.0239
- **Minimum Thickness**: 0.0227
- **GA**: 24

USG Steel C-H Stud (CH)

- **Style**: CH, ES
- **Design Thickness**: 0.0059
- **Minimum Thickness**: 0.0051
- **GA**: 23

USG Steel Jamb-Strut (JS)

- **Style**: JR, JS
- **Design Thickness**: 0.0359
- **Minimum Thickness**: 0.0341
- **GA**: 20

USG Steel E-Stud (ES)

- **Style**: CH, ES, JR, JS
- **Design Thickness**: 0.0359
- **Minimum Thickness**: 0.0341
- **GA**: 20

Thickness–Steel Framing Components

<table>
<thead>
<tr>
<th>Style</th>
<th>Design Thickness</th>
<th>Minimum Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH, ES</td>
<td>0.0188 in. 18</td>
<td>0.0179 in. 18</td>
</tr>
<tr>
<td>JR</td>
<td>0.0239 in. 22</td>
<td>0.0227 in. 22</td>
</tr>
<tr>
<td>CH, ES, JR, JS</td>
<td>0.0059 in. 33</td>
<td>0.0341 in. 34</td>
</tr>
</tbody>
</table>

Structural Properties–Steel Framing Components

Component and Size	Product Identification	Average Weight (lb./lin. ft.)	Area (sq. in.)		Stress (ksi)	
2-1/2" C-H Stud	212CH-18	0.5186	0.1524	0.129	0.093	19.8
	212CH-34	0.998	0.2910	0.239	0.1741	24.0
4" C-H Stud	400CH-18	0.6118	0.1798	0.383	0.162	19.8
	400CH-34	1.243	0.3433	0.730	0.318	24.0
6" C-H Stud	600CH-34	1.366	0.4227	1.998	0.569	24.0
Double 6" E-Stud	600ES-18	1.546	0.3982	2.004	0.628	20.0
	600ES-34	2.372	0.6364	3.400	1.094	20.0
2-1/2" J-Runner	212JR-23	0.448	0.1346	0.117	0.085	3.00
	212JR-34	0.670	0.2039	0.192	0.130	4.96
4" J-Runner	400JR-23	0.573	0.1705	0.351	0.163	3.00
	400JR-34	0.857	0.2577	0.574	0.251	4.96
6" J-Runner	600JR-23	0.740	0.2183	0.937	0.295	3.00
	600JR-34	1.107	0.3295	1.523	0.457	4.96
2-1/2" Jamb Strut	212JS-34	0.818	0.2398	0.226	0.143	3.00
4" Jamb Strut	400JS-34	1.006	0.2936	0.647	0.270	3.00
6" Jamb Strut	600JS-34	1.256	0.3654	1.673	0.485	3.00

Note

(a) Studs and runners comply with ASTM C645. (b) Properties of steel framing members have been calculated in conformance with ANSI Specification for the Design of Cold-Formed Steel Structural Members, 1996 edition. (c) Full section modulus to be used with corresponding design stress.
Components

Interior Finishing Products

<table>
<thead>
<tr>
<th>Sheetrock® Brand Acoustical Sealant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superior performance as a fire caulk in UL-classified joint systems</td>
</tr>
<tr>
<td>Minimizes whistling and dirt accumulation due to air movement when applied to partition perimeter and penetrations</td>
</tr>
<tr>
<td>Refer to product submittal sheet J678 for more information</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sheetrock® Brand First Coat</th>
</tr>
</thead>
<tbody>
<tr>
<td>A flat latex paint formulated to provide a superior first (prime) coat over interior gypsum board and concrete surfaces</td>
</tr>
<tr>
<td>Equalizes porosity and surface texture differences to provide greater uniformity of finish coat</td>
</tr>
<tr>
<td>Refer to product submittal sheet J1095 for more information</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sheetrock® Brand All Purpose Joint Compound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Versatile performer: tape, finish, texture, laminate or skim coat</td>
</tr>
<tr>
<td>Combines single-package, ready-mixed convenience with good taping and topping performance</td>
</tr>
<tr>
<td>Refer to product submittal sheet J60A for more information</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sheetrock® Brand Plus 3™ Lightweight All Purpose Joint Compound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weighs up to 30% less than conventional compounds and sands with the ease of a topping compound</td>
</tr>
<tr>
<td>With very low shrinkage, it requires only two coats over metal, such as corner beads and fasteners</td>
</tr>
<tr>
<td>Refer to product submittal sheet J498A for more information</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sheetrock® Brand Tuff-Hide™ Primer-Surfacer</th>
</tr>
</thead>
<tbody>
<tr>
<td>A high solids, vinyl, acrylic latex-based coating for interior spray application over new drywall</td>
</tr>
<tr>
<td>Single spray application provides the same results achieved using a typical two-step process of skim coating surfaces with joint compound followed by a coat of primer</td>
</tr>
<tr>
<td>Saves time and money</td>
</tr>
<tr>
<td>Refer to product submittal sheet J1691 for more information</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sheetrock® Brand Paper Faced Metal Bead and Trim</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost-effective, problem-free, beautiful corners</td>
</tr>
<tr>
<td>Superior solution to edge cracking and chipping</td>
</tr>
<tr>
<td>Refer to product catalog J1424 for more information</td>
</tr>
</tbody>
</table>
USG shaft wall systems provide superior safety and performance for an important building component.

Performance Tests

USG shaft wall systems result from a program of extensive testing and continuous improvements to help you achieve the superior performance that your project demands. Systems provide up to four-hour fire resistance and sound ratings up to 52 STC, and resist both sustained and intermittent lateral loads and fatigue under cyclic lateral loading.

Testing Methods

All USG products and systems undergo exhaustive testing to ensure that they meet exacting standards. USG products are classified as to fire resistance and fire-hazard properties. As part of this protocol, Underwriters Laboratories (UL) periodically audits production of these materials to ensure compliance with necessary properties. UL is an independent, not-for-profit organization that has tested products for public safety for over a century.

Products are manufactured and tested in accordance with recognized standards. ASTM International is one of the largest voluntary standards development organizations in the world, and is a trusted source for technical standards for materials, products, systems and services.

These systems have been designed and tested using accepted engineering practices with deflection limits of L/120, L/240 and L/360. Additionally, limiting height tables listed herein account for flexural and shear stresses. A wide range of product and system combinations is available to meet performance requirements: intermittent and sustained air pressure loading of 5, 7-1/2, 10 and 15 psf.

Testing Results

Fire Protection

In the event of a fire, mechanical shafts and stairs are vital channels for communication, power, water, air, exhaust and egress—making the shafts the lifelines of the building. Since it is critically important that these walls protect occupants and necessary services from fire, USG shaft wall systems have been tested for fire endurance.

The primary attribute of USG shaft wall systems and its components is fire resistance. Testing supporting this attribute ensures that this critical performance component will not be compromised when properly installed.

This fire testing results in the following:
- UL Classification of all gypsum panel components
- UL fire-resistance Classifications for one to four hours
- UL system testing with all major elevator door manufacturers
- UL listing for fire damper installation
- Fire test data for electrical panels, call-button boxes and other interfaces
- UL listing of shaft wall head of wall

See the Good Design Practices section for more information on fire resistance.

Sound Control

Sound control test data demonstrate the effectiveness of USG shaft wall systems in attenuating sound. When properly designed and installed, USG shaft wall systems will increase comfort levels by reducing unwanted noise from adjacent spaces.

The standard assembly offers 39 STC rating; 47 STC is achieved by adding 1" sound insulation within the partition cavity, and 52 STC with single-layer 3/4" ULTRACODE panels and 3" sound insulation.
Impact-Resistant for Durability
Impacted with a 60-lb. sand bag, USG shaft wall systems proved durable. In the test, three impacts each were made at 15 ft.-lb., 30 ft.-lb., and each following 15 ft.-lb. interval until failure. At 270 ft.-lb. the test was stopped; while cracked, the wall was not penetrated. For additional information about abuse-resistant, secure or other hardened applications, contact USG at 800 USG.4YOU.

Moisture/Mold
The best way to minimize damage from moisture and mold is to minimize or eliminate exposure to water before, during and after construction. In all cases where moisture intrusion occurs, eliminate all sources of moisture immediately.

Sheetrock gypsum liner panels, Sheetrock Mold Tough gypsum liner panels and Sheetrock glass-mat gypsum liner panels have water-resistant facings. In addition, Sheetrock Mold Tough and Sheetrock glass-mat gypsum liner panels have moisture- and mold-resistant paper and a water-resistant core.

When used in conjunction with good construction practices, these products will minimize, but not eliminate, the risk of moisture and mold damage. For more information on moisture control and mold, see WB2317, Moisture, Mold, and Construction Practices, and SA934, Moisture-Resistant Assemblies. The following Web sites are another resource:

New York City Department of Health
cci.nyc.ny.us/html/doh
Search for mold resources.

United States Environmental Protection Agency
epa.gov
Search for mold resources.

Responsible Solutions to Mold Coalition
responsiblemoldsolutions.org
Search for mold resources.
Alternative Materials and Special Requirements

The following notes offer alternative methods of construction.

1. Where insulation is shown in assembly drawings, the specific type of product is required in the assembly to achieve the stated fire-resistance rating. Otherwise, mineral wool or glass fiber insulation may be incorporated into any assembly without compromising the fire-resistant rating.

2. Stud depths are minimum required for fire-resistance rating.

3. Where RC-1 resilient channel is indicated, RC-1 or equivalent may be used. RC-2 is not an equivalent substitution.

4. Use L/360 deflection criteria for limiting height/stud selection and 20 ga. minimum framing when applying Durock cement board. Refer to SA934, Moisture-Resistant Assemblies, for more information on application and related products.

5. 5/8” IMPERIAL FIRECODE Core gypsum base, 5/8” SHEETROCK Mold Tough FIRECODE Core gypsum panels or 5/8” FIBEROCK Aqua-Tough interior panels may be substituted for 5/8” SHEETROCK FIRECODE Core gypsum panels.

6. 1/2” SHEETROCK MOLD TOUGH FIRECODE C Core or 1/2” IMPERIAL FIRECODE C Core gypsum base may be substituted for 1/2” SHEETROCK FIRECODE C Core gypsum panels.

7. 5/8” SHEETROCK FIRECODE Core gypsum panels, 5/8” IMPERIAL FIRECODE Core gypsum base or 5/8” FIBEROCK panels can be substituted for 1/2” SHEETROCK FIRECODE C Core gypsum panels.

8. Use 20 ga. minimum framing with FIBEROCK panels.

9. 1” SHEETROCK MOLD TOUGH gypsum liner panels, or SHEETROCK glass-mat gypsum liner panels may be substituted for 1” SHEETROCK gypsum liner panels in all systems without compromising the fire rating.

10. For more information about performance rated shaft wall systems and for complete list of USG’s fire-rated designs, visit USG Design Studio at USGDesignStudio.com.

11. For detailed information regarding UL Classified designs shown in the Performance Selector, please refer to the UL Fire-Resistance Directory — Volume One or visit UL.com.
Performance Selector

All details, specifications, and data contained in this literature are intended as a general guide. These products must not be used in a design or construction of any given structure without complete and detailed evaluation by a qualified structural engineer or architect to verify suitability of a particular product for use in the structure.

<table>
<thead>
<tr>
<th>Construction Detail</th>
<th>Description</th>
<th>Test Number</th>
<th>STC</th>
<th>Test Number</th>
<th>ARL</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Hour Fire-rated Construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-loadbearing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>wt. 8</td>
<td>3/4”</td>
<td>USG-040901</td>
<td>Based on 4” C-H studs 25 gauge</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/8”</td>
<td>• 3/8” SHEETROCK FIRECODE Core gypsum panels, joints finished</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2-1/2” USG C-H Studs 25 gauge 24” o.c.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1” SHEETROCK gypsum liner panels</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acoustical Performance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>UL Des U415, System A or U469</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>STC 39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SA026</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2-Hour Fire-rated Construction						
Non-loadbearing						
wt. 9	3/4”	USG-040917	USG-040912			
3/8”	Based on 4” C-H studs 25 gauge					
	Based on 1” sound batts in cavity					
	RAL-OT-04-022					
	Based on 4” C-H studs 25 gauge with 3” mineral fiber insulation					
	RAL-OT-04-019					
Acoustical Performance						
	UL Des U415, System B or U438					
	STC 38					
	43					
	48					
	50					
Reference						
	SA026	2				

wt. 8	4/4”	RAL-OT-04-020				
	Based on 4” C-H studs with 3” THERMAFIBER SAFB insulation					
Acoustical Performance						
	UL Des U415, System C					
	STC 51					
Reference						
	SA026	3				

wt. 10	3/4”	USG-040911				
	Based on 4” C-H studs 25 gauge					
3/8”	UL Des U415, System D					
3/2”	SA026					
Acoustical Performance						
	UL Des U415, System E or U467					
	STC 44					
Reference						
	SA026	5				

wt. 10	4”	USG-040909				
	Based on 4” C-H studs with 3” mineral fiber insulation					
4”	USG-040910					
Acoustical Performance						
	UL Des U415, System F					
	STC 53					
	58					
Reference						
	SA026	6				

wt. 8	2”	USG-040911				
	Based on 4” C-H studs 25 gauge with additional layer on liner panel side and 3” mineral fiber insulation					
2”		RAL-OT-04-020				
Acoustical Performance						
	UL Des U415, System G					
	STC 51					
Reference						
	SA026	7				
2-Hour Fire-rated Construction

<table>
<thead>
<tr>
<th>Construction Detail</th>
<th>Non-loadbearing</th>
<th>Acoustical Performance</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Test Number</td>
<td>STC</td>
<td>Test Number</td>
</tr>
<tr>
<td>5/8" 5/8" SHEETROCK Firecode C Core gypsum panels, face layer joints finished</td>
<td>UL Des U437</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4" USG C-H studs 20 gauge 24" o.c., run horizontally and attached to vertical USG J-runners, 20 gauge</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1" SHEETROCK gypsum liner panels</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3-Hour Fire-rated Construction

<table>
<thead>
<tr>
<th>Construction Detail</th>
<th>Non-loadbearing</th>
<th>Acoustical Performance</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Test Number</td>
<td>STC</td>
<td>Test Number</td>
</tr>
<tr>
<td>wt. 13 4/8" 5/8" SHEETROCK Firecode C Core gypsum panels, face layer joints finished</td>
<td>UL Des U415, System G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-1/2" USG C-H studs 25 gauge 24" o.c.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1" SHEETROCK gypsum liner panels</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Construction Detail</th>
<th>Non-loadbearing</th>
<th>Acoustical Performance</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Test Number</td>
<td>STC</td>
<td>Test Number</td>
</tr>
<tr>
<td>wt. 13 4/3" 5/8" SHEETROCK Firecode C Core gypsum panels, face layer joints finished</td>
<td>UL Des U415, System H</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>2-1/2" USG C-H studs 25 gauge 24" o.c.</td>
<td>USG-040902 Based on 4" C-H Studs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1" SHEETROCK gypsum liner panels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/8" SHEETROCK Firecode C Core gypsum panels, joints finished</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4-Hour Fire-rated Construction

<table>
<thead>
<tr>
<th>Construction Detail</th>
<th>Non-loadbearing</th>
<th>Acoustical Performance</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Test Number</td>
<td>STC</td>
<td>Test Number</td>
</tr>
<tr>
<td>wt. 18 6/5" 3/4" SHEETROCK ULTRACODE Core gypsum panels, on furring channel 24" o.c., over 2 layers</td>
<td>UL Des U415, System I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/4" SHEETROCK ULTRACODE Core gypsum panels, face layer joints finished</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-1/2" USG C-H studs 25 gauge 24" o.c.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1" SHEETROCK gypsum liner panels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>base layer over furring channel applied vertically</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Stud size and gauge shown are minimums. Possible panel substitutions shown on cross reference of USG Panels and UL Fire Ratings on page 7 of SA100, Fire-Resistant Assemblies.

Note: Stud size and gauge shown are minimums. Possible panel substitutions shown on cross reference of USG Panels and UL Fire Ratings on page 7 of SA100, Fire-Resistant Assemblies.

Note: Stud size and gauge shown are minimums. Possible panel substitutions shown on cross reference of USG Panels and UL Fire Ratings on page 7 of SA100, Fire-Resistant Assemblies.
USG shaft wall systems are engineered to withstand pressure loads and provide in-service impact resistance to ensure long-term performance and durability. Use this section to determine the size and gauge of framing for the system you select. You will need to know elevator pressures and other in-service demands.

Structural Performance

Flexing Resistance for In-Service Performance

Shaft walls are subjected to both positive and negative pressures as elevator cabs rise and descend. This piston effect of an elevator in its shaft causes continual flexing of the shaft wall. In tests, USG shaft wall systems were subjected to over 1 million full oscillation cycles to model wall performance through the life of the building. These tests showed that a 25 ga. J-runner is inadequate at the top or bottom of a shaft wall. As the long runner leg is continually flexed from wall deflection, it can rupture and screws can strip out and fracture from the flexing. Oscillation tests showed 24 ga. J-runners minimize these problems and are essential to long-term safety.

Limiting Heights

Maximum partition heights are shown for four different intermittent air pressure loads and three allowable deflections. The applied pressure load is selected by the designer based on elevator cab speed and the number of elevators per shaft. Instead of using only deflection criteria, USG design data consider several additional factors in determining limiting partition heights.

A. Bending stress—the unit force exerted that will break or distort the stud.

B. End reaction shear—determined by the amount of force applied to the stud, which will bend or shear the J-runner or cripple the stud.

C. Deflection—the actual deflection under a load. Allowable deflection is based on the amount of bending under load that a particular wall can experience without exceeding a prescribed ratio related to partition height.

Elevator Shaft Pressures

The air pressure load on shaft walls depends upon the elevator cab speed and the number of elevators per shaft. The following recommendations are derived from USG tests conducted in three high-rise buildings ranging in height from 17 to 100 stories.

Recommended Elevator Shaft Pressure Load

<table>
<thead>
<tr>
<th>Elevator velocity ft./min.</th>
<th>One or two elevators per shaft</th>
<th>Three or more elevators per shaft</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 180</td>
<td>5.0 psf</td>
<td>5.0 psf</td>
</tr>
<tr>
<td>180 to 700</td>
<td>7.5 psf</td>
<td>5.0 psf</td>
</tr>
<tr>
<td>700 to 1,600</td>
<td>10.0 psf</td>
<td>7.5 psf</td>
</tr>
<tr>
<td>1,600 to 2,000</td>
<td>15.0 psf</td>
<td>7.5 psf</td>
</tr>
</tbody>
</table>

Note

(a) Single-cab high-speed elevator shafts may require special design considerations.
Wall Systems – Limiting Heights Table

Intermittent Air Pressure Load (wind load) – psf

<table>
<thead>
<tr>
<th>Stud Type and Size</th>
<th>Designation</th>
<th>Allowable deflection</th>
<th>Fire-rated system B, D, F, G, I</th>
<th>Fire-rated system E</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>7.5</td>
<td>10</td>
</tr>
<tr>
<td>2-1/2" C-H Studs</td>
<td>212CH-18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L/120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L/240</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L/360</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-1/2" C-H Studs</td>
<td>212CH-34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L/120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L/240</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4" C-H Studs</td>
<td>400CH-18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L/120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L/240</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L/360</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4" C-H Studs</td>
<td>400CH-34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L/120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L/240</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6" C-H Studs</td>
<td>600CH-34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L/120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L/240</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L/360</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fire-rated system C |

<table>
<thead>
<tr>
<th>Stud Type and Size</th>
<th>Designation</th>
<th>Allowable deflection</th>
<th>Fire-rated system C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>7.5</td>
</tr>
<tr>
<td>2-1/2" C-H Studs</td>
<td>212CH-18</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L/120</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L/240</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L/360</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-1/2" C-H Studs</td>
<td>212CH-34</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L/120</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L/240</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L/360</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4" C-H Studs</td>
<td>400CH-18</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L/120</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L/240</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L/360</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4" C-H Studs</td>
<td>400CH-34</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L/120</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L/240</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6" C-H Studs</td>
<td>600CH-34</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L/120</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L/240</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L/360</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fire-rated system A |

For more information consult Progressive Engineering Report AER-09038 at p-e-i.com

Notes

- Runner fasteners should withstand 193-lb. single shear and 200-lb. bearing force; attachment spacing should not exceed 24" on center. See the Performance Selector for system references and rated assembly details. L/180 data available upon request from USG. Limiting criteria: f–bending stress, d–deflection, v–end reaction shear, c–practical limitation. (a) Stud spacing of 24" for all values. (b) For assembly with single-layer board both sides of stud. (c) For assembly with single-layer board attached to studs. (d) Attachment of USG steel double 6" E-stud for USG shaft wall systems. The studs are to be attached back-to-back (web to web) with pairs 1/2" of type S-12 pan head screws installed in two rows, spaced as widely apart as possible. The first and last pairs of fasteners shall start within 6" of each end of the stud. They shall then be spaced at a maximum of 12" on center throughout the body of the entire stud. (e) Use JR20 runner for this height.
Wall Systems – Limiting Heights

Unlined Shafts

Gypsum shaft walls have been used for many years for vent and air shafts. Their fire-resistant features and economical dry construction make them ideal for this use. To function properly, vent and air shaft systems should be designed with the following performance provisions:

1. Gypsum board surface temperature does not exceed 125 °F.
2. Separate approved liners should be installed in areas subject to continuous moisture overspray, condensation or air stream temperature over 125 °F.
3. Air stream dew point temperatures are maintained below gypsum board surface temperature.
4. The assembly is constructed to withstand sustained design uniform air pressure loads not exceeding 10 psf. Startup surge loads should not be greater than 1-1/2 times the design static load. (See table below for limiting heights.)
5. To ensure airtight construction, select appropriate sealants and apply where required.

<table>
<thead>
<tr>
<th>Sustained pressure load–psf</th>
<th>2-hr. fire-rated system</th>
<th>1-hr. fire-rated system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stud Type and Size</td>
<td>Designation</td>
<td>Stud Spacing</td>
</tr>
<tr>
<td>2-1/2” C-H Studs</td>
<td>212CH-18</td>
<td>24”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L/240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L/360</td>
</tr>
<tr>
<td>212CH-34</td>
<td>24”</td>
<td>L/120</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L/240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L/360</td>
</tr>
<tr>
<td>4” C-H Studs</td>
<td>400CH-18</td>
<td>24”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L/240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L/360</td>
</tr>
<tr>
<td>400CH-34</td>
<td>24”</td>
<td>L/120</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L/240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L/360</td>
</tr>
<tr>
<td>6” C-H Studs</td>
<td>600CH-34</td>
<td>24”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L/240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L/360</td>
</tr>
</tbody>
</table>

For more information consult Progressive Engineering Report AER-09038 at p-e-i.com

Notes

Runner fasteners should withstand 193-lb. single shear and 200-lb. bearing force; attachment spacing should not exceed 24” o.c. (a) Use JR20 runner for this height.
USG shaft wall systems can be used as a vent enclosure for vertical shafts with a two-hour fire rating per UL Design U529. This shaft assembly is particularly suited for structures having a number of relatively small and separated mechanical, service and ventilator shafts.

Vent Shaft Elevation

Wall Intersection

Corner

Note

Limiting height of system is 12.0". Install panels vertical and full height only.
Performance Selector

Ceiling System – Limiting Spans

Horizontal Assemblies
USG shaft wall systems installed horizontally provide economical construction for fire-resistive duct enclosures, corridor ceilings and stairway soffits.

Triple Layer
With 1" liner panels inserted in USG C-H studs 24" o.c. and triple-layer 1/2" SHEETROCK FIRECODE C Core gypsum panels screw-attached to studs, the system provides two-hour protection from fire.

Double Layer
With double-layer 1/2" SHEETROCK FIRECODE C Core gypsum panels screw-attached to studs, the assembly provides two-hour fire-resistive ceiling construction for corridors and stair soffits (see Design Details).

Single Layer
With single-layer 5/8" SHEETROCK FIRECODE C Core gypsum panels screw-attached to studs, the assembly provides one-hour fire-resistive ceiling construction for corridors and stair soffits.

Limitations
1. USG C-H studs are not designed to carry live loads or mechanical equipment or provide material storage area.
2. Maximum stud spacing is 24" o.c.; maximum spans are shown in table below.

Limiting Spans—Horizontal Shaft Walls*

<table>
<thead>
<tr>
<th>2-Hr. Horizontal Membrane or Metal Duct Enclosure</th>
<th>Maximum Span</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triple-layer 1/2" gypsum panels</td>
<td></td>
</tr>
<tr>
<td>212CH-18</td>
<td>6' 3"</td>
</tr>
<tr>
<td>212CH-34</td>
<td>8' 3"</td>
</tr>
<tr>
<td>400CH-18</td>
<td>8' 6"</td>
</tr>
<tr>
<td>400CH-34</td>
<td>12' 0"</td>
</tr>
<tr>
<td>600CH-34</td>
<td>12' 8"</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2-Hr. Corridor Ceilings and Stair Soffits</th>
<th>Maximum Span</th>
</tr>
</thead>
<tbody>
<tr>
<td>Double-layer 1/2" gypsum panels</td>
<td></td>
</tr>
<tr>
<td>212CH-18</td>
<td>6' 0"</td>
</tr>
<tr>
<td>212CH-34</td>
<td>9' 2"</td>
</tr>
<tr>
<td>400CH-18</td>
<td>7' 10"</td>
</tr>
<tr>
<td>400CH-34</td>
<td>13' 2"</td>
</tr>
<tr>
<td>600CH-34</td>
<td>15' 10"</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1-Hr. Single-layer 5/8" gypsum panels</th>
<th>Maximum Span</th>
</tr>
</thead>
<tbody>
<tr>
<td>212CH-18</td>
<td>6' 7"</td>
</tr>
<tr>
<td>212CH-34</td>
<td>10' 3"</td>
</tr>
<tr>
<td>400CH-18</td>
<td>8' 8"</td>
</tr>
<tr>
<td>400CH-34</td>
<td>14' 6"</td>
</tr>
<tr>
<td>600CH-34</td>
<td>17' 5"</td>
</tr>
</tbody>
</table>

For more information consult Progressive Engineering Report AER-09038 at p-e-i.com

Note
(a) Based on L/240 allowable deflection with studs at 24" o.c. and JR24 runner. (b) Full steel stress allowed based on ASTM E119. (c) Allowable steel stress reduced 50%.
Ceiling Membrane

2-Hr. Rated Assembly – Horizontal Membrane or Metal Duct Enclosure

For more information consult Progressive Engineering Report AER-09038 at p-e-i.com

1-Hr. Fire Rated Assembly (see NER-258 or AER-09038) – Corridor Ceiling and Stair Soffit

2-Hr. Fire Rated Assembly (see NER-258 or AER-09038) – Corridor Ceiling and Stair Soffit

USG Shaft Wall Systems
Basic Interfaces – System B

Head Section (UL System HW-D-0603)
- **USG steel C-H stud**
- **SHEETROCK acoustical sealant**
- **USG steel J-runner**
- **SHEETROCK gypsum liner panels**
- **SHEETROCK gypsum panels**
- **FIRECODE CORE gypsum panels**
- **Call-Button Box**
 - **25 ga. steel strip** (6”x12” min.)
 - **call-button box**

Base Section (UL System BW-S-0016)
- **1" SHEETROCK gypsum liner panels**
- **SHEETROCK/FIRECODE CORE gypsum panels**
- **gypsum panel cant screw-attached to vertical studs (for projections over 4")**
- **USG steel C-H stud**
- **USG steel J-runner**
- **SHEETROCK acoustical sealant as required for sound**
Design Details

Basic Interfaces – System B

<table>
<thead>
<tr>
<th>Outlet/Switch Box</th>
<th>Control Joint</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note
The surface area of individual outlet or switch boxes shall not exceed 16 square inches. The aggregate surface area of all boxes shall not exceed 100 square inches. (per UL fire resistance directory)

<table>
<thead>
<tr>
<th>Stair Hanger and Rod Application</th>
<th>Cross-Section at Stair Hanger</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. **SHEETROCK gypsum panels**
2. **1" SHEETROCK gypsum liner panels**
3. **USG steel C-H stud 24" o.c.**
4. **USG steel J-runner**
5. **Steel angle**
6. **Stairwell side**
7. **Stair stringer**
8. **Stair landing**
9. **Outlet box**
10. **Control joint**
11. **1/8" joint width**
12. **Acoustical sealant**
13. **Mineral wool insulation**

USG Shaft Wall Systems

24
Steel Beam (UL System HW-D-0610)

- Steel beam with fireproofing
 - Power-actuated fastener 24" o.c.
 - USG steel J-runner attached to beam before fireproofing
 - SHEETROCK® acoustical sealant
 - 1" SHEETROCK® gypsum panels
 - Firecode Core® gypsum panels

Steel Beam with Z-Clip (UL System HW-D-0609)

- Steel beam with fireproofing
- Z-clip attached to beam before fireproofing
- 1" SHEETROCK® gypsum liner panels
- SHEETROCK® gypsum panel
- Steel plate (20 ga. min.) fastened to studs parallel to stringers as required
- USG steel J-runner
- USG steel C-H stud
- SHEETROCK® acoustical sealant
- Fasteners

Steel Beam with Offset (UL System HW-D-0611)

- Steel beam with fireproofing
- 1 1/2" min. 8" max.
- Stee plate (20 ga. min.) fastened to studs parallel to stringers as required
- USG steel J-runner
- USG steel C-H stud
- High-temperature fasteners
- Sheetrock® acoustical sealant
- Sheetrock® FIRECODE® Core® gypsum panels
- 1" Sheetrock® gypsum liner panels
- Firecode Core® gypsum panels

Steel Beam with Z-Clip (UL System HW-D-0609)

- Steel beam with fireproofing
- Z-clip attached to beam before fireproofing
- 1" SHEETROCK® gypsum liner panels
- SHEETROCK® gypsum panel
- Steel plate (20 ga. min.) fastened to studs parallel to stringers as required
- USG steel J-runner
- USG steel C-H stud
- SHEETROCK® acoustical sealant
- Fasteners

Steel Beam Application

- Steel beam with fireproofing
- Z-clip attached to beam before fireproofing
- 1" SHEETROCK® gypsum liner panels
- SHEETROCK® gypsum panel
- Steel plate (20 ga. min.) fastened to studs parallel to stringers as required
- USG steel J-runner
- USG steel C-H stud
- SHEETROCK® acoustical sealant
- Fasteners
Design Details

Fire Damper

Typical Penetrations Elevation at Duct Opening Tested per UL R13479

Section A
1-1/2 Hr. Fire Damper Tested per UL R13479

Section B
1-1/2 Hr. Fire Damper Tested per UL R13479

- USG steel J-runner
- USG steel C-H studs
- USG steel E-studs or J-runners back to back

1/2" x 1/2" x 16 gauge galvanized angle

USG steel J-runner header

1" SHEETROCK gypsum liner panel

1/2" max.

damper sleeve

1/2" x 1/2" x 16 gauge galvanized angle

USG steel J-runner

1/2" max.
Notes
1. Framing at elevator door shall be a minimum 4" studs and runners 20 gauge.
2. Horizontal placement of liner panel and C-H Studs per UL Design U437.
3. Flanges of the jamb strut must be continuously braced by screw connections to the liner and face panels 12" o.c.
4. For doors greater than 5’ wide and/or transom heights greater than 4”, reinforce the 400JS-34 with a nested 400ES-34.
Design Details

Wall Systems – C-H Studs and Liner Panels Installed Horizontally

Horizontal Shaftwall Elevation per UL Design U437

Section C-C Head Section

Section B-B Wall Intersection

Section D-D Base Section

Note
Horizontal framing shall be a minimum 4” C-H Studs and runners 20 gauge.
Good Design Practices

Use this section as a reference if questions arise during the design or application of USG shaft wall systems.

This section is an overview of good design, application, installation and safety considerations that should be addressed when USG products and systems are used. This section outlines some major issues, but is not intended to be comprehensive.

We recommend that architects and contractors seek the assistance of safety professionals, especially at the construction site, because there are many factors to consider that are not included here. For more detailed information on safety and material handling, please refer to Chapter 13 of The Gypsum Construction Handbook.

| 1 | **System Performance** | USG conducts tests on products and systems to meet performance requirements specified by various agencies. Upon written request we will provide test certification for published fire, sound, structural and other pertinent data covering systems designed and constructed according to our published specifications. Substitutions of any of the components are not recommended and are not supported by USG. |
| 2 | **Fire Resistance** | Use fire test data to compare and select materials and assemblies, and to secure acceptance by the authority having jurisdiction. SA100, *Fire-Resistant Assemblies*, shows tested fire resistance for various systems. For assemblies tested at Underwriters Laboratories Inc. (UL), ratings are specific to the designs tested, and do not necessarily apply to alternate products or construction. For example, insulation may not be added to floor- or roof-ceiling assemblies, unless described in the UL design. Addition of insulation in the concealed space between the ceiling membrane |

Standards

The following standards apply:

- ASTM C1396: Standard Specification for Gypsum Board
- ASTM C754: Standard Specification for Installation of Steel Framing Members to Receive Screw-Attached Gypsum Board, Backing Board, or Water-Resistant Backing Board
- ASTM C645: Standard Specification for Non-Load (Axial) Bearing Steel Studs, Runners (Track), and Rigid Furring Channels for Screw Application of Gypsum Board
- ASTM C1002: Standard Specification for Steel Drill Screws for the Application of Gypsum Board
- ASTM C1047: Standard Specification for Accessories for Gypsum Wallboard and Gypsum Veneer Base
Good Design Practices

and the floor or roof structure may reduce the hourly rating of an assembly by causing premature disruption of the ceiling membrane and/or higher temperatures on structural components under fire exposure conditions.

Increasing the size or gauge of the stud (e.g., 2-1/2" C-H stud 25 gauge to 4" C-H stud 20 gauge) does not affect the fire resistance rating of the assembly.

For more detailed information, refer to the system fire resistance Performance Selector on pages 14-15.

3 Structural Criteria

Structure design must take into account the conditions that will exist and the resulting stresses and movements. Loadbearing walls include the exterior walls of a building and some interior walls. These structures must be designed to carry the weight of the structure, its components and other loads that occur once the building is occupied.

The amount of axial load that structural members can bear will vary with the amount of lateral load (pressure from wind or other horizontal stresses) that the final assembly may incur.

Manufacturers of structural components, particularly steel framing (studs, runners, joists) provide tables that identify the maximum allowable loads for various components under specific conditions. These tables typically start at 5 psf lateral loads and increase in 5 or 10 psf increments to about 40 psf. Interior partitions are per code designed for 5 psf lateral loads.

Interior non-bearing partitions such as USG shaft wall are not designed to carry axial loads. Limiting heights are based on stress or deflection limits for given lateral loads. Height limitations depend on the gauge of the steel used, dimensions of the stud, stud spacing, and the allowable deflection limit. For limiting height tables, see page 17; for horizontal shaft wall span table, see page 20; and for limiting heights, unlined return air shafts, see page 18.

Note: Size and gauge availability is based upon limiting heights tables. Other sizes and gauges have not been evaluated for performance.

4 Control Joints — Building Movement

Locating control joints is the responsibility of the design professional/architect. Integrate these suggestions with project conditions when determining specific locations for control joints.

“Control joint” is a general term for methods used to minimize (not eliminate the potential for) cracking in partitions and ceilings. Specifically, a control joint minimizes cracking in the face of a partition or ceiling. At the perimeter of a partition or ceiling, it is called a perimeter relief joint.

A control joint is effective in minimizing cracking caused by tensile or compressive movement in a membrane resulting from thermal, hygrometric and structural movement. Isolate shaft wall surfaces with control joints or other means where:

– construction changes within the plane of the shaft wall
– shaft wall run exceeds 30’
– expansion or control joints occur through the building itself
– in stairwells at each floor level

Ceiling-height door frames may be used as control joints. Less-than-ceiling-height door frames should have control joints extending to ceiling from both corners on both sides of the partition. Treat window openings in same manner as doors.

Zinc control joints, when properly insulated and backed by gypsum panels, have been fire-endurance tested for use in one- and two-hour fire-rated walls.

Proper installation of control joints in partitions and ceilings requires breaking the gypsum panels or lath behind the control joint. In ceiling construction, the framing should also be broken. In partitions, separate studs are used on each side of the joint with the runner track separated at that location.

5 Pressure Loads — Minimizing Wind Noise

Where shaft walls enclose elevator and return air vents, and intermittent pressures up to 15 psf are expected, SHEETROCK acoustic sealant is recommended at intersections with floors, ceilings, columns, ducts, etc. to seal peripheries and penetrations and minimize whistling and dirt accumulation due to air movement. Sealant selection including
joint treatment, surface coatings and details to seal the wall under these sustained pressures must be provided by the designer. See pages 16-17 for information on evaluating pressure loading and selecting the appropriate framing components based upon these design criteria.

6 **Pressure Loads — Air Handling**

Shaft walls may be used for air handling with sustained pressures up to 10 psf. When air pressure exceeds 10 psf, air handling should be contained with a metal duct. See pages 18-19 for information about air handling and vent shaft enclosures.

7 **Penetrations**

Penetrations of the shaft wall, such as door frames and duct openings, require additional reinforcement at corners to distribute concentrated stresses if a control joint is not used. Penetrations greater than 48” wide require supplemental support for the shaft wall at the opening. Where access panels or large duct penetrations occur in shafts having pressure loads, headers, sills and adjacent channels may require reinforcing to properly distribute these loads.

8 **Sound Control**

Use sound test data to compare and select materials and constructions. These data frequently are essential for securing compliance by the agency having jurisdiction. See SA200, *Acoustical Assemblies*, for acoustical performance.

Sound control refers to the ability to attenuate sound passing through a partition. The Sound Transmission Class (STC) is a widely used rating of sound attenuation performance. It is relatively accurate for speech sounds but not for music, mechanical equipment noise or any sound with substantial low-frequency energy. It is tested per ASTM E90 and rated per ASTM E413. See the Performance Selector for the STC ratings for USG shaft wall systems.

Sound tests are conducted under ideal laboratory conditions per ASTM procedures. USG products are assembled in a specific manner to meet the requirements of these ASTM procedures. Substitution of materials other than those tested or deviation from the specified construction may adversely affect performance.

Field performance depends on building design and careful attention to detailing and workmanship. Where these partitions are used for sound control, seal the partition perimeter with 1/4” min. round bead of SHEETROCK acoustical sealant. Seal around all penetrations.

9 **Moisture and Mold**

Understanding water and mold and its impact on the construction process and building materials are integral to good design and construction practices. USG offers references and additional sources that reinforce good design, construction and maintenance practices. These practices are generally recognized as necessary to minimize moisture-related problems and the growth of mold in a building environment. If you have additional questions, please contact those sources or USG.

The best way to address mold is to make sure that building materials do not get wet before and during installation and are not exposed to moisture inside the finished building. See Moisture/Mold in the Performance Testing section for more information.

10 **Air and Water Infiltration**

Flashing and sealants as shown in the construction documents and as selected by the architect and/or structural engineer should be provided to resist air and water infiltration. The flashing and sealants selected shall be installed in a workmanlike manner in appropriate locations to maintain continuity of air/water barriers, particularly at windows, doors and other penetrations of exterior wall.

11 **Vapor Retarders**

Water vapor control must always be considered in the design of exterior wall systems. Humidity and temperature conditions may require the installation of a vapor retarder to prevent moisture condensation within the wall and the resulting damage. To determine the necessity and location of vapor retarders, a water vapor transmission and dew point analysis of the layered wall assembly should be conducted by a qualified engineer.
Good Design Practices

12 Product Handling and Storage

Gypsum Panels
Protect all gypsum products from exposure to excessive or continuous moisture and the elements before, during and after installation. Eliminate sources of moisture immediately.

Metal Framing Protection
Give light-gauge metal components such as steel studs and runners, furring channels and resilient channels adequate protection in the warehouse and on the jobsite against rusting caused by moisture. In marine areas such as the Caribbean, Florida and the Gulf Coast where chloride and sea salt are present in combination with excessively high humidity, use of components that offer increased protection against corrosion is recommended.

13 Application

Call-Button Floor Indicator and Electric Boxes
 Shaft walls will accommodate outlet boxes with depths up to the stud width. See page 24 for details.

Framing Attachment
Runners and studs attached to beams or columns may need to be installed before steel is spray-fireproofed. Excess fireproofing should be removed from runners and studs before installing shaft wall liner and sealant.

Sheetrock Gypsum Liner Panel Application – Butt Joints
When an installation of USG shaft wall height exceeds maximum available panel length, it is necessary to incorporate a butt joint between two liner panels. Stagger butt joints in adjacent panels top and bottom to prevent a continuous horizontal joint. Joint should be located in top or bottom third of wall. Horizontal joints need not be backed by steel framing to maintain the fire-rating of the assembly.

14 Painting Systems

Painting products and systems should be used that comply with recommendations and requirements in appendices of ASTM C840. For priming and decorating with paint, texture or wall covering, follow manufacturer’s directions.

All surfaces, including applied joint compound, must be thoroughly dry, dust-free and not glossy. Prime with SHEETROCK First Coat or with an undiluted, interior latex flat paint with high-solids content. Allow to dry before decorating.

To improve fastener concealment, where gypsum panel walls and ceilings will be subjected to severe artificial or natural side lighting and decorated with a gloss paint (egg shell, semi-gloss or gloss), the gypsum panel surface should be skim coated with joint compound to equalize suction and texture differences between the drywall face paper and the finished joint compound before painting. SHEETROCK TUFF-HIDE primer-surfacer skims and primes in a single application.

15 Screws

Type S screws are suitable for gypsum panel or gypsum base attachment to 25 and 20 ga. steel studs. Type S-12 screws should be specified for other applications to steel heavier than 20 ga. Screw lengths should be 1” for base layer (1-1/4” when 3/4” ULTRACODE is used) and 1-5/8” for face layer and at least 3/8” longer than the total thickness for other applications. Walls over 16’ high should have studs screw-attached to runners.

16 Steel Door Frames
Ordered separately, should be at least 16 ga. steel, shop primed, and have throats accurately formed to overall thickness of the shaft wall plus 3/32” minimum. They should be anchored at floor with 16 ga. steel plates welded to trim flanges, with provision for two power-driven anchors or equal per plate. Jamb anchors should be 18 ga. steel welded in jamb and screw-attached to anchors.

USG reserves the right to make changes or improvements in the design of all catalogued items without notice and without obligation to incorporate these changes or improvements in items already manufactured.
Application Guide Specifications

This guide specification is provided to assist you in specification of USG shaft wall systems. If you have additional questions or would like more information regarding this or other USG products and systems, please contact USG at 800 USG.4YOU or visit usgdesignstudio.com

Part 1: General

1.1 Related Documents

Drawings and general provisions of the project contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section. USG System Folder SA926 – USG Shaft Wall Systems.

1.2 Scope

Specify the appropriate USG shaft wall system to meet project requirements for fire resistance, structural performance, sound control and aesthetics.

1.3 Summary

A. This section includes the following USG shaft wall systems

1. Vertical shaft enclosures
2. Stair enclosures
3. Horizontal assemblies
4. Vent shaft enclosures

B. Related Sections:

1. Division 9 SHEETROCK gypsum panels and assemblies
2. Division 9 IMPERIAL gypsum base and Veneer Plaster Assemblies

1.4 Definitions

A. Shaft Wall: An assembly of steel framing, gypsum boards and other materials used to enclose elevator shafts, stairways, air shafts and mechanical components.

B. Gypsum Board Construction Terminology: Refer to ASTM C11 for definition of terms for gypsum board construction not defined in this document.

1.5 Performance Requirements

A. The systems are UL Listed for fire resistance.

B. System fire-resistance testing with elevator door manufacturer at UL.

C. Fire-resistance tested penetration details for call-button boxes and position indicators.

D. Oscillation tested to 1 million cycles to ensure performance of the life of the building.

E. UL Listed fire damper application.

F. Air Pressure Loads—Select based on project requirements. See details in this brochure for USG shaft wall system data.

G. Deflection Limit—Select based on project requirements. See details in this brochure for USG shaft wall system data.

H. STC Rating—Select based on project requirements.

I. Hardened Shafts—Where required by code, for buildings classified as high-rise buildings, special provisions may be required.

1.6 Submittals

A. Product and System Data – Submit system folder SA926, which can be downloaded at usg.com.

B. Submit certification of manufacturer compliance with fire and sound requirements indicated.

C. Fire rating compliance shall include verification of compatibility with labeled elevator door frame installation and test verification of call box and similar penetrations.
Application Guide

Specifications

1.7 Delivery, Storage and Handling of Materials

A. Deliver materials in their original unopened packages bearing manufacturer identification.

B. Protect materials from wetting and damage from weather, direct sunlight, surface contamination, corrosion, construction traffic and other causes.

C. **Warning:** Store all SHEETROCK gypsum panels flat. Panels are heavy and can fall over, causing serious injury or death. Do not move unless authorized.

1.8 Project Conditions

A. All materials shall be suitably protected from the weather during installation to prevent damage to the shaft wall.

B. Install gypsum panels following environmental conditions, room temperatures and ventilation specified in the USG Gypsum Construction Handbook.

1.9 Quality Assurance

A. Protect USG shaft wall system and components from moisture before, during and after installation. Eliminate sources of moisture immediately.

B. Fire-Resistance Rated Assemblies: Provide UL Design Number (e.g., U415) for basic systems.

C. **Sound-Rated Assemblies (STC)**—Provide sound-rated system whose materials and construction comply with requirements of ASTM E90 and are classified according to ASTM E413 by a qualified testing agency.

D. Preinstallation Conference – Conduct conference at project site. Review methods and procedures for work related to USG shaft wall system assemblies.

Part 2: Products

2.1 Manufacturer

A. Supply materials manufactured by or for the United States Gypsum Company that comply with requirements of fire-resistance rated assemblies indicated in System Folder SA926.

B. **Basis of Design**—USG shaft wall system

2.2 Materials

A. **Gypsum Liner Panels**—ASTM C1396, 1” SHEETROCK gypsum liner panels, 100% recycled green face and back paper, beveled edge, 24” wide, lengths as required. Stamped with UL Classification label documenting UL Classifications for fire resistance, surface burning characteristics, and noncombustibility. Panels should also be identified with the following language: “SHEETROCK brand gypsum liner panel, a Component of United States Gypsum Company Fire Rated Systems.”

B. **SHEETROCK MOLD TOUGH Gypsum Liner Panels**—ASTM C1396, 1 SHEETROCK MOLD TOUGH gypsum liner panels, 100% recycled blue face and back paper, beveled edge, 24” wide, lengths as required. Stamped with UL Classification label documenting UL Classifications for fire resistance, surface burning characteristics, and noncombustibility. Panels should also be identified with the following language: “SHEETROCK brand MOLD TOUGH gypsum liner panel, a Component of United States Gypsum Company Fire Rated Systems.”

C. **SHEETROCK Glass-Mat Liner Panels**—ASTM C1658, 1” SHEETROCK glass-mat liner panels, moisture- and mold-resistant gypsum core encased in a moisture- and mold-resistant glass mat on both sides, 24” wide, lengths as required. Stamped with UL Classification label documenting UL Classifications for fire resistance, surface burning characteristics and noncombustibility. Panels should also be identified with the following language: “SHEETROCK glass-mat liner panel, a Component of United States Gypsum Company Fire Rated Systems.”
D. **Gypsum Wallboard**—ASTM C1396, (1/2") (5/8") (3/4") (select thickness), 4 wide, tapered edge, SHEETROCK gypsum panels, (FIRECODE Core) (FIRECODE C Core) (ULTRACODE Core) (MOLD TOUGH FIRECODE Core), ASTM C1287 (FIBEROCK AQUATough interior panel) (FIBEROCK abuse-resistant interior panels) (select core type), lengths as required. Identified with UL Classification label.

E. **Gypsum Base for Gypsum Veneer Plaster**—ASTM C1396, (1/2") (5/8") (select thickness), 4 wide, IMPERIAL gypsum base (FIRECODE Core) (FIRECODE C Core) (select core type), lengths as required.

F. **Cement Board**—ASTM C1325, DUROCK cement board, 1/2" and 5/8" thickness, 48" width x 96" length.

G. **Gypsum Wallboard and Gypsum Base Joint Treatment Materials**—select a USG Interior Finishing System (see product folder J1424).

H. **Fasteners**—ASTM C1002, Screws: (3/8") (1/2") Type (S) (S-12) pan head; 5/8" Type S-12 low profile head; (1") (1-5/8") (2-1/4") Type S bugle head. DUROCK tile backer screws for steel framing: 1-5/8". Type G screws: 1-1/2".

I. **Metal Trim**—ASTM C1047, No. (200A) (200B) (401) (402) (701B) (801B).

J. SHEETROCK paper faced metal bead and trim.

K. Steel furring channels.

L. RC-1 resilient channels or equivalent.

M. USG steel C-H studs, (212CH-18) (212CH-34) (400CH-18) (400CH-34) (600CH-34) hot-dipped galvanized, lengths as required (select from tables).

N. USG steel E-studs, (400ES-34) (600ES-34) hot-dipped galvanized, lengths as required (select from tables).

P. Steel angle clips 20 gauge, (2" x 2" x 2") (2" x 2" x 4") (horizontal shaft wall only).

Q. USG steel jamb struts, (212JS-34) (400JS-34) (600JS-34) hot-dipped galvanized.

R. Runner fasteners, power-driven type, to withstand required single shear and bearing force when driven through structural head or base and without exceeding allowable design stress in runner, fastener or structural support (obtain locally).

S. SHEETROCK acoustical sealant.

T. Sound batts – (1") (1-1/2") (3").

U. Zinc control joint #093.

Part 3: Execution

3.1 **Examination**

Examine substrates and abutting assembles with installer present. Proceed with installation after conditions determined to be satisfactory.

3.2 **Preparation**

A. Check that system components are available to construct USG shaft wall system

- SHEETROCK gypsum liner panels
- SHEETROCK MOLD TOUGH gypsum liner panels
- SHEETROCK glass-mat liner panels
- SHEETROCK FIRECODE, FIRECODE C, or ULTRACODE Core gypsum panels
- SHEETROCK MOLD TOUGH FIRECODE Core, FIRECODE C Core or ULTRACODE Core gypsum panels
- DUROCK cement board
- FIBEROCK abuse-resistant interior panels
Application Guide Specifications

-- FIBEROCK AQUA-TOUGH interior panel
-- IMPERIAL FIRECODE Core or FIRECODE C Core gypsum base
-- USG steel framing components (C-H studs, J-runner, E-studs, jamb struts)

B. Other fire-resistive elements/materials: Coordinate installation of USG shaft wall assembly with sprayed fire-resistive materials and other fire-resistive elements so that both elements remain complete and undamaged.

3.3 Shaft Wall Installation

A. USG Steel Framing and SHEETROCK Gypsum Liner Panels
1. Position steel J-runners at floor and ceiling with the short leg toward finish side of wall.
2. Securely attach runners to structural supports with powder-actuated fasteners at both ends and max. 24” o.c.
3. For attachment to steel frame construction, install floor and ceiling J-runners and J-runners or E-studs on columns and beams before steel is fireproofed.
4. For attachment to structural steel, use Z-shaped stand-off clips secured to structural steel before fireproofing application.
5. Remove spray-fireproofing from J-runners and E-studs before installing gypsum liner panels.
6. For wall heights less than maximum available panel height, cut gypsum liner panels no more than 1” less than floor-to-ceiling height and erect vertically between J-runners.
7. Where shaft wall height shaft exceeds maximum available panel-length, pieces of gypsum liner panel must be butted together at factory-cut ends.
 a. Position gypsum liner panel end joints within upper and lower third points of wall.
 b. Stagger joints top and bottom in adjacent panels.
 c. Screw studs to runners on walls over 16’.
8. Cut C-H studs 3/8” to not more than 1/2” less than floor-to-ceiling height.
9. Install C-H studs between gypsum liner panels with liner securely engaged.
10. Terminations: Install full-length steel E-studs or J-runners vertically at T-intersections, corners, door jambs and columns.
11. Openings: Frame with vertical E-stud or J-runner at vertical edges, horizontal J-runner at head and sill. Reinforce as shown in this brochure. Suitably frame all openings to maintain structural support for wall.
12. Elevator Door Frames: Install jamb struts each side of elevator door frames to act as strut-studs.
13. Steel Hinged Door Frames: Install floor-to-ceiling steel E-studs each side to act as strut-studs.
14. Attach strut-stud (see 3.2.A.12 or 3.2.A.13) to floor and ceiling runners with two 3/8” Type S-12 pan head screws.
 Attach strut-studs to jamb anchors with 1/2” Type S-12 screws. Over steel doors, install a cut-to-length section of J-Runner and attach to strut-studs with 3/8” Type S-12 screws.

B. Resilient Channels
1. Install resilient channels (RC-1 or equivalent) horizontally to face of studs, within 6” of floor and ceiling.
2. Apply resilient channels a maximum of 24” o.c. vertically (with open face up).
3. Attach resilient channels to studs with 3/8” Type S screws driven through holes in mounting flange.
4. Splice channel by nesting directly over stud; screw-attach through both flanges. Reinforce with screws at both ends of splice.
5. Install 1/2” x 3” wide continuous gypsum filler strips to top and bottom runner.
6. Gypsum panel application with resilient channel: Apply base layer horizontally to resilient channels with end joints staggered. Fasten with 1” Type S screws 12” o.c. Apply face layer vertically with joints staggered; attach to channels with 1-5/8” Type S screws 12” o.c.

C. SHEETROCK Gypsum Panels
Gypsum panels and fastening must be per the corresponding fire-resistance design number that is the basis of design. See the Performance Selector in this brochure for specific fire-resistance design numbers. The system references below
correspond to the Performance Selector found on pages 14-15.

Per UL Design U415, SHEETROCK gypsum panels may be applied vertically or horizontally in all of the systems below, except System F. Please note appropriate fastener spacing.

System A—U415 or U469, one-hour fire-resistance rating. Apply one layer 5/8" SHEETROCK FIRECODE Core gypsum panels to studs and runners with 1" Type S or S-12 (typical) screws. Fastener spacing – Space screws 12" o.c. for vertical panel application, 8" o.c. for horizontal panel application.

System B—U415 or U438, two-hour fire-resistance rating. Apply two layers of 1/2" SHEETROCK FIRECODE C Core gypsum panels. Apply base layer to studs with 1" Type S or S-12 (typical) screws. Space screws 24" o.c. on edges and in the field of the panels for vertical application, 16" o.c. for horizontal application. Apply face layer to studs and J-runners with 1-5/8" Type S or S-12 (typical) screws. Space screws 12" along the edges and in the field when applied vertically, 8" o.c. when applied horizontally. Stagger all joints between base and face layers.

System D—U415 or U459, two-hour fire-resistance rating. Install 1-1/2" THERMAFIBER™ SAFB mineral wool batts in stud cavity. Apply base layer of 5/8" SHEETROCK FIRECODE C Core gypsum panels using 1" Type S or S-12 (typical) screws spaced 24" o.c. when board is applied vertically. Space screws 16" o.c. when board is applied horizontally. Apply face layer of 1/2" DUROCK cement board to C-H Studs with 1-5/8" DUROCK tile backer screws spaced 8" o.c.

System E—U415 or U467, two-hour fire-resistance rating. Apply one layer 1/2" SHEETROCK FIRECODE C Core gypsum panels to both sides of C-H studs. Fasten with 1" Type S or S-12 (typical) screws. Space screws 12" o.c. along the edges and in the field for vertical panel application, 8" o.c. for horizontal.

System F—U415, two-hour fire-resistance rating. Apply base layer 1/2" SHEETROCK FIRECODE C Core gypsum panels to resilient channels with 1" Type S or S-12 (typical) screws spaced 24" o.c. Stagger end joints. Apply face layer 1/2" SHEETROCK FIRECODE C Core gypsum panels with 1-5/8" Type S or S-12 (typical) screws spaced 12" o.c.

System G—U415, three-hour fire-resistance rating. Apply two layers of 5/8" SHEETROCK FIRECODE C Core gypsum panels using Type S or S-12 (typical) screws spaced 12" o.c. Apply first and second (inner) layers vertically or horizontally over room side of steel C-H studs. When applied vertically, center joints between panels over studs. Stagger all joints a minimum 24". When panels are applied horizontally, stagger joints a minimum 12". Apply third layer of 5/8" SHEETROCK FIRECODE C Core gypsum panels vertically or horizontally over room side of steel C-H studs using 2-1/4" Type S or S-12 (typical) screws. Space screws 16" o.c. when board is applied vertically, 12" o.c. when board is applied horizontally.

System H—U415, three-hour fire-resistance rating. Alternate to System G above. Apply third layer of 5/8" SHEETROCK FIRECODE C Core gypsum panels to other side of steel C-H studs.

Horizontal Assemblies—two-hour fire-resistance rating. Install three layers of 1/2" SHEETROCK FIRECODE C Core gypsum panels to horizontally installed C-H and/or E-studs. Apply the base layer with 1" Type S or S-12 (typical) screws spaced 24" o.c. Apply the mid-layer in the same manner with joints offset 2' and attached with 1-5/8" Type S or S-12 (typical) screws spaced 12" o.c. Apply the face layer attached with 2-1/4" Type S or S-12 (typical) screws spaced 12" o.c. Place face layer end joints between studs and secure with 1-1/2" Type G screws 8" o.c.

Horizontal Stud Shaft Wall

1. Attach horizontal J-runners at the floor and top of wall and vertical J-runners to structural supporting elements with powder-actuated fasteners located not greater than 2" from ends and spaced no more than 24" on center with short leg of J-runner toward the finish side of the wall.
2. Install gypsum liner panels horizontally without butt joints, which limits the width of the wall to the available length of the liner panels.
3. Cut gypsum liner panels 1" less than the width of the wall, and center the panels between the vertical J-runners. The top edge of the uppermost liner panel to be cut 1" less than the wall height to clear the 1" leg of the top J-runner.
4. Free edge of the uppermost and lower liner panels attached to the long leg of the top and bottom J-runners with 1-5/8"
 long Type S or S-12 steel screws spaced no greater than 12" on centers.
5. Cut C-H studs to maintain a 1/4" gap at each end of the wall.
6. Install C-H studs horizontally with the open "C" section of the studs facing down and spaced 24" on center.
7. Steel angles should be minimum 20 gauge, 2" x 2" x 2" for 4 C-H studs, and 2" x 2" x 4" for 6 C-H studs. Clips are
 centered under and tight to the web of the C-H studs, but not attached to the studs. Clips are attached through the web
 of the vertical J-runners to the underlying structural supporting element with a minimum of two 1/2" Type S-12 pan
 head screws.
8. As an alternative to the preceding angle clip, fasten each end of the horizontal C-H stud to the vertical J-runner legs
 with 1/2" Type S-12 pan-head steel screws on both sides of the wall.
9. End reactions of the horizontal C-H studs must be accommodated by the structural element required at the ends of the
 wall, and must be determined by a licensed professional engineer.
10. The allowable height of the wall is predicated on the structural adequacy of the vertical structural elements.

D. SHEETROCK Gypsum Panels (for vertical and horizontal shaft walls)
 Vent Shaft Enclosure—US29, two-hour fire-resistance rating. Install 1" x 2" x 25" ga. galvanized steel angles as run-
 ners on floor, ceilings and partition ends. Fasten runners or angles securely to structure with suitable fasteners spaced
 24" o.c. max. Install 1/2" SHEETROCK FIRECODE C Core gypsum panels vertically. Fasten to angles with 1" Type S or S-12
 (typical) screws spaced 12" o.c. Apply SHEETROCK® DURABOND® setting-type or SHEETROCK® EASY SAND™ lightweight setting-
 type joint compound on back side of liner panel and sheet-laminate to shaft-side board with vertical joints offset 12"
 from inner board joints. Also screw to shaft side board with 1-1/2" long Type G screws spaced 24" o.c. in both directions.
 Laminate face board to liner panels in similar manner. Install face boards vertically with joints offset 12" from liner panel
 joints. Apply pressure when placing boards to ensure good adhesive bond and fasten to liner panel with 1-1/2" Type G
 screws, spaced 24" o.c.

3.4 Accessory Application

A. Gypsum Panel Joints—Finish all face layer joints and internal angles with a SHEETROCK interior finishing
 system installed according to manufacturer’s directions. See product folder J1424 for detailed recommendations.
B. Corner Bead—Reinforce all vertical and horizontal exterior corners with SHEETROCK paper faced bead. See product
 folder J1424 for detailed recommendations.
C. Metal Trim—Where shaft wall terminates against masonry or other dissimilar material, apply SHEETROCK paper faced
 bead and trim over face layer edge.
About the cover:
Project
Skybridge at One North Halsted
Chicago, IL
Recipient of the 2004 AIA Honor Award
Architects
Perkins & Will
Ralph Johnson, FAIA
Chicago, IL
Photographer
©James Steinkamp