This manual is intended for use with ANSUL® R-102 Restaurant Fire Suppression Systems.

Those who install, operate, recharge, or maintain these fire suppression systems should read this entire manual. Specific sections will be of particular interest depending upon one's responsibilities.

Design, installation, recharge, and maintenance of the system must conform to the limitations detailed in this manual and performed by an individual who attended an ANSUL training program and became trained to install, recharge, design, and maintain the Ansul system.

Fire suppression systems are mechanical devices. They need periodic care. Maintenance is a vital step in the performance of your fire suppression system. As such it must be performed in accordance with NFPA 96 (Standard for the Installation of Equipment for the Removal of Smoke and Grease-Laden Vapors from Commercial Cooking Equipment) and NFPA 17A (Standard on Wet Chemical Extinguishing Systems) by an authorized ANSUL distributor. To provide maximum assurance that the fire suppression system will operate effectively and safely, maintenance must be conducted at six-month intervals, or earlier if the situation dictates. Twelve-year maintenance must include agent tank hydrostatic testing.

ANSUL PART NO. 418087-010

ANSUL, ANSUL AUTOMAN and ANSULEX are trademarks of Ansul Incorporated or its affiliates.
<table>
<thead>
<tr>
<th>DATE</th>
<th>PAGE</th>
<th>REV. NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-1-01</td>
<td>5-14</td>
<td>2</td>
</tr>
<tr>
<td>8-1-01</td>
<td>5-20</td>
<td>2</td>
</tr>
<tr>
<td>8-1-01</td>
<td>5-23</td>
<td>3</td>
</tr>
<tr>
<td>8-1-01</td>
<td>5-27</td>
<td>Deleted</td>
</tr>
<tr>
<td>10-1-02</td>
<td>4-3</td>
<td>4</td>
</tr>
<tr>
<td>10-1-02</td>
<td>4-7</td>
<td>3</td>
</tr>
<tr>
<td>10-1-02</td>
<td>4-12</td>
<td>5</td>
</tr>
<tr>
<td>10-1-02</td>
<td>4-14</td>
<td>5</td>
</tr>
<tr>
<td>10-1-02</td>
<td>4-15</td>
<td>4</td>
</tr>
<tr>
<td>10-1-02</td>
<td>4-17</td>
<td>5</td>
</tr>
<tr>
<td>10-1-02</td>
<td>4-19</td>
<td>3</td>
</tr>
<tr>
<td>10-1-02</td>
<td>4-20</td>
<td>4</td>
</tr>
<tr>
<td>10-1-02</td>
<td>4-21</td>
<td>3</td>
</tr>
<tr>
<td>10-1-02</td>
<td>4-25</td>
<td>6</td>
</tr>
<tr>
<td>10-1-02</td>
<td>4-26</td>
<td>5</td>
</tr>
<tr>
<td>10-1-02</td>
<td>4-27</td>
<td>4</td>
</tr>
<tr>
<td>10-1-02</td>
<td>4-30</td>
<td>3</td>
</tr>
<tr>
<td>10-1-02</td>
<td>4-33</td>
<td>5</td>
</tr>
<tr>
<td>10-1-02</td>
<td>5-4</td>
<td>4</td>
</tr>
<tr>
<td>10-1-02</td>
<td>5-5</td>
<td>4</td>
</tr>
<tr>
<td>10-1-02</td>
<td>5-19</td>
<td>4</td>
</tr>
<tr>
<td>10-1-02</td>
<td>6-4</td>
<td>2</td>
</tr>
<tr>
<td>10-1-02</td>
<td>8-6</td>
<td>4</td>
</tr>
<tr>
<td>10-1-02</td>
<td>8-8</td>
<td>1</td>
</tr>
<tr>
<td>10-1-02</td>
<td>9-1</td>
<td>5</td>
</tr>
<tr>
<td>10-1-02</td>
<td>9-2</td>
<td>5</td>
</tr>
<tr>
<td>10-1-02</td>
<td>9-3</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DATE</th>
<th>PAGE</th>
<th>REV. NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-1-02</td>
<td>9-4</td>
<td>7</td>
</tr>
<tr>
<td>10-1-02</td>
<td>9-5</td>
<td>5</td>
</tr>
<tr>
<td>10-1-02</td>
<td>9-6.2</td>
<td>2</td>
</tr>
<tr>
<td>10-1-02</td>
<td>9-7</td>
<td>3</td>
</tr>
<tr>
<td>10-1-02</td>
<td>9-8</td>
<td>3</td>
</tr>
<tr>
<td>10-1-02</td>
<td>9-10</td>
<td>3</td>
</tr>
<tr>
<td>10-1-02</td>
<td>9-10.2</td>
<td>1</td>
</tr>
<tr>
<td>10-1-02</td>
<td>9-11</td>
<td>5</td>
</tr>
<tr>
<td>10-1-02</td>
<td>9-12</td>
<td>3</td>
</tr>
<tr>
<td>10-1-02</td>
<td>9-13</td>
<td>Deleted</td>
</tr>
<tr>
<td>10-1-02</td>
<td>9-14</td>
<td>Deleted</td>
</tr>
<tr>
<td>10-1-02</td>
<td>9-15</td>
<td>Deleted</td>
</tr>
<tr>
<td>10-1-02</td>
<td>9-16</td>
<td>Deleted</td>
</tr>
<tr>
<td>3-1-04</td>
<td>2-1</td>
<td>3</td>
</tr>
<tr>
<td>3-1-04</td>
<td>2-2</td>
<td>4</td>
</tr>
<tr>
<td>3-1-04</td>
<td>4-31</td>
<td>6</td>
</tr>
<tr>
<td>3-1-04</td>
<td>5-8</td>
<td>2</td>
</tr>
<tr>
<td>3-1-04</td>
<td>5-22</td>
<td>3</td>
</tr>
<tr>
<td>3-1-04</td>
<td>5-24</td>
<td>4</td>
</tr>
<tr>
<td>3-1-04</td>
<td>5-26</td>
<td>4</td>
</tr>
<tr>
<td>3-1-04</td>
<td>6-1</td>
<td>2</td>
</tr>
<tr>
<td>3-1-04</td>
<td>7-2</td>
<td>5</td>
</tr>
<tr>
<td>3-1-04</td>
<td>7-3</td>
<td>4</td>
</tr>
<tr>
<td>3-1-04</td>
<td>8-1</td>
<td>7</td>
</tr>
<tr>
<td>3-1-04</td>
<td>8-3</td>
<td>4</td>
</tr>
<tr>
<td>4-1-06</td>
<td>1-2</td>
<td>5</td>
</tr>
<tr>
<td>4-1-06</td>
<td>3-1</td>
<td>5</td>
</tr>
</tbody>
</table>

- Indicates revised information.
- Indicates no change to text – change in page sequence only.
<table>
<thead>
<tr>
<th>DATE</th>
<th>PAGE</th>
<th>REV. NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-1-06</td>
<td>3-2</td>
<td>5</td>
</tr>
<tr>
<td>4-1-06</td>
<td>3-3</td>
<td>8</td>
</tr>
<tr>
<td>4-1-06</td>
<td>3-4</td>
<td>7</td>
</tr>
<tr>
<td>4-1-06</td>
<td>3-7</td>
<td>5</td>
</tr>
<tr>
<td>4-1-06</td>
<td>3-8</td>
<td>7</td>
</tr>
<tr>
<td>4-1-06</td>
<td>3-9</td>
<td>4</td>
</tr>
<tr>
<td>4-1-06</td>
<td>3-10</td>
<td>3</td>
</tr>
<tr>
<td>4-1-06</td>
<td>3-11</td>
<td>New Page</td>
</tr>
<tr>
<td>4-1-06</td>
<td>3-12</td>
<td>New Page</td>
</tr>
<tr>
<td>4-1-06</td>
<td>4-2</td>
<td>4</td>
</tr>
<tr>
<td>4-1-06</td>
<td>4-4</td>
<td>6</td>
</tr>
<tr>
<td>4-1-06</td>
<td>4-5</td>
<td>4</td>
</tr>
<tr>
<td>4-1-06</td>
<td>4-8</td>
<td>6</td>
</tr>
<tr>
<td>4-1-06</td>
<td>4-9</td>
<td>8</td>
</tr>
<tr>
<td>4-1-06</td>
<td>4-11</td>
<td>8</td>
</tr>
<tr>
<td>4-1-06</td>
<td>4-16</td>
<td>6</td>
</tr>
<tr>
<td>4-1-06</td>
<td>4-22</td>
<td>4</td>
</tr>
<tr>
<td>4-1-06</td>
<td>4-23</td>
<td>7</td>
</tr>
<tr>
<td>4-1-06</td>
<td>4-24</td>
<td>6</td>
</tr>
<tr>
<td>4-1-06</td>
<td>4-28</td>
<td>5</td>
</tr>
<tr>
<td>4-1-06</td>
<td>4-29</td>
<td>5</td>
</tr>
<tr>
<td>4-1-06</td>
<td>4-32</td>
<td>6</td>
</tr>
<tr>
<td>4-1-06</td>
<td>4-36</td>
<td>4</td>
</tr>
<tr>
<td>4-1-06</td>
<td>4-37</td>
<td>4</td>
</tr>
<tr>
<td>4-1-06</td>
<td>4-43</td>
<td>5</td>
</tr>
<tr>
<td>4-1-06</td>
<td>4-44</td>
<td>5</td>
</tr>
<tr>
<td>4-1-06</td>
<td>4-45</td>
<td>3</td>
</tr>
</tbody>
</table>

> Indicates revised information.
- Indicates no change to text – change in page sequence only.
<table>
<thead>
<tr>
<th>DATE</th>
<th>PAGE</th>
<th>REV. NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-1-06</td>
<td>8-5</td>
<td>4</td>
</tr>
<tr>
<td>4-1-06</td>
<td>8-7</td>
<td>4</td>
</tr>
<tr>
<td>4-1-06</td>
<td>9-6</td>
<td>5</td>
</tr>
<tr>
<td>4-1-06</td>
<td>9-6.1</td>
<td>4</td>
</tr>
<tr>
<td>4-1-06</td>
<td>9-9</td>
<td>4</td>
</tr>
<tr>
<td>4-1-06</td>
<td>9-10.1</td>
<td>3</td>
</tr>
<tr>
<td>4-1-06</td>
<td>9-10.2</td>
<td>2</td>
</tr>
<tr>
<td>3-1-07</td>
<td>1-1</td>
<td>5</td>
</tr>
<tr>
<td>3-1-07</td>
<td>3-5</td>
<td>7</td>
</tr>
<tr>
<td>3-1-07</td>
<td>3-6</td>
<td>6</td>
</tr>
<tr>
<td>3-1-07</td>
<td>4-1</td>
<td>7</td>
</tr>
<tr>
<td>3-1-07</td>
<td>4-6</td>
<td>6</td>
</tr>
<tr>
<td>3-1-07</td>
<td>4-10</td>
<td>6</td>
</tr>
<tr>
<td>3-1-07</td>
<td>4-13</td>
<td>7</td>
</tr>
<tr>
<td>3-1-07</td>
<td>4-18</td>
<td>6</td>
</tr>
<tr>
<td>3-1-07</td>
<td>4-34</td>
<td>7</td>
</tr>
<tr>
<td>3-1-07</td>
<td>4-34.1</td>
<td>New</td>
</tr>
<tr>
<td>3-1-07</td>
<td>4-34.2</td>
<td>New</td>
</tr>
<tr>
<td>3-1-07</td>
<td>4-35</td>
<td>5</td>
</tr>
<tr>
<td>3-1-07</td>
<td>4-38</td>
<td>7</td>
</tr>
<tr>
<td>3-1-07</td>
<td>4-39</td>
<td>6</td>
</tr>
<tr>
<td>3-1-07</td>
<td>4-40</td>
<td>5</td>
</tr>
<tr>
<td>3-1-07</td>
<td>4-41</td>
<td>5</td>
</tr>
<tr>
<td>3-1-07</td>
<td>4-42</td>
<td>6</td>
</tr>
<tr>
<td>3-1-07</td>
<td>4-48</td>
<td>5</td>
</tr>
<tr>
<td>3-1-07</td>
<td>4-54</td>
<td>4</td>
</tr>
<tr>
<td>3-1-07</td>
<td>5-7</td>
<td>5</td>
</tr>
</tbody>
</table>

- Indicates revised information.
- Indicates no change to text – change in page sequence only.
I. GENERAL INFORMATION
   1. DESIGN AND APPLICATION
   2. UL LISTING
   3. DEFINITION OF TERMS

II. SYSTEM DESCRIPTION
   1. TOTAL SYSTEM
     a. Single-Tank
     b. Double-Tank
     c. Multiple-Tank
   2. SYSTEM COMPONENTS
      a. EXTINGUISHING AGENT
      b. 'ANSUL AUTOMAN' REGULATED RELEASE ASSEMBLY
         (MECHANICAL)
      c. 'ANSUL AUTOMAN' REGULATED RELEASE ASSEMBLY
         (ELECTRICAL)
      d. REMOTE MECHANICAL RELEASE
      e. SINGLE TANK ENCLOSURE ASSEMBLY
      f. RED PAINTED BRACKET ASSEMBLY
      g. AGENT TANK ASSEMBLY
      h. OEM RELEASE/BRAKT ASSEMBLY (FOR OEM IN-CABINET USE ONLY)
      i. OEM REGULATED ACTUATOR ASSEMBLY
      j. TWO TANK ENCLOSURE ASSEMBLY
      k. 24 VDC REGULATED RELEASE ASSEMBLY
      l. ADDITIONAL SHIPPING ASSEMBLY
      m. GAS CARTRIDGES
      n. NOZZLES
      o. SILICONE LUBRICANT
      p. SWIVEL ADAPTOR
      q. RUBBER BLOW-OFF CAP
      r. CB METAL BLOW-OFF CAP
      s. CONDUIT OFFSET ASSEMBLY
      t. "QUIK-SEAL" ADAPTOR
      u. "COMPRESSION-SEAL" ADAPTOR
      v. "HOOD SEAL" ADAPTOR
      w. DETECTORS
      x. PULLEY ELBOWS
      y. PULLEY TEE
      z. STAINLESS STEEL CABLE
      AA. REMOTE MANUAL PULL STATION
      BB. MECHANICAL GAS VALVES

III. SYSTEM COMPONENTS
     1. ELECTRICAL GAS VALVES
     2. MANUAL RESET RELAY
     3. ELECTRICAL SWITCHES
     4. ALARM INITIATING SWITCH
     5. REGULATOR TEST KIT
     6. FUSIBLE LINK
     7. MAXIMUM REGISTERING THERMOMETER
     8. HOSE/GROMMET PACKAGE
     9. BURSTING DISC
     10. NOZZLE AIMING DEVICE
     11. STAINLESS STEEL ACTUATOR HOSE

IV. SYSTEM DESIGN
     1. NOZZLE PLACEMENT REQUIREMENTS
     2. Duct Protection
     3. Transition Protection
     4. Electrostatic Precipitator Protection
     5. Plenum Protection
     6. Appliance Protection
        a. Fryer – Single Nozzle Protection
        b. Multiple Nozzle Fryer Protection – Tilt Skillet/Braising Pan
        c. Range Protection
        d. Griddle Protection
        e. Chain Broiler Protection
        f. Overhead Chain Broiler Protection
        g. Upright/Salamander Broiler Protection
        h. Gas-Radiant/Electric Char-Broiler Protection
        i. Lava-Rock (Ceramic) Char-Broiler Protection
        j. Natural Charcoal Broiler Protection
        k. Alternate Ceramic/Natural Charcoal Char-Broiler Protection
        l. Wood Fueled Char-Broiler Protection
        m. Wok Protection
        n. Nozzle Application Chart
        o. Specific Application by Model
        p. Overlapping Nozzle Coverage
     2. TANK AND CARTRIDGE REQUIREMENTS
     3. ACTUATION AND EXPPELLANT GAS LINE REQUIREMENTS
     4. DISTRIBUTION PIPING REQUIREMENTS
     5. General Piping Requirements
        a. Supply and Branch Line Identification
        b. 1.5 Gallon System
        c. 3.0 Gallon System
        d. 6.0 Gallon Manifolded System
        e. 9.0 Gallon System

TABLE OF CONTENTS
UL EX. 3470 ULC CEx747 Page 1
3-1-07 REV. 9
# TABLE OF CONTENTS

**IV. SYSTEM DESIGN (Continued)**

| DETECTION SYSTEM REQUIREMENTS | 4-53 – 4-54 |
| Detector Identification | 4-53 |
| Detector/Pulley Elbow Quantity | 4-53 |
| Detector Placement Requirements | 4-53 – 4-54 |
| Detection Line Requirements | 4-54 |
| Fusible Link Selection | 4-54 |
| MANUAL PULL STATION REQUIREMENTS | 4-55 |
| MECHANICAL GAS VALVE REQUIREMENTS | 4-55 – 4-56 |
| ELECTRICAL GAS VALVE REQUIREMENTS | 4-56 |
| Approvals | 4-56 |
| ALARM INITIATING SWITCH REQUIREMENTS | 4-56 |
| ELECTRICAL SWITCH REQUIREMENTS | 4-56 – 4-59 |

**V. INSTALLATION INSTRUCTIONS**

| MOUNTING THE COMPONENTS | 5-1 – 5-2.1 |
| INSTALLING THE ACTUATION AND EXPPELLANT GAS LINES | 5-3 – 5-6 |
| INSTALLING THE DISTRIBUTION PIPING | 5-7 |
| INSTALLING THE DETECTION SYSTEM | 5-8 – 5-17 |
| Installing “Clip-on” Style Linkage | 5-8 – 5-12 |
| “Scissors” Style Linkage Installation | 5-12 – 5-15 |
| Installing “Hinged” Style Linkage | 5-15 – 5-17 |
| INSTALLING REMOTE MANUAL PULL STATION | 5-18 – 5-19 |
| INSTALLING MECHANICAL GAS VALVE | 5-19 – 5-22 |
| INSTALLING ELECTRICAL GAS VALVE | 5-23 |
| INSTALLING ELECTRICAL SWITCHES | 5-24 |
| INSTALLING ALARM INITIATING SWITCH | 5-25 |
| WIRING 24 VDC REGULATED RELEASE ASSEMBLY | 5-26 |

**VI. TESTING AND PLACING IN SERVICE**

| TESTING MANUAL PULL STATION | 6-1 |
| TESTING MECHANICAL GAS VALVES | 6-1 |
| TESTING ELECTRICAL GAS VALVES | 6-2 |
| TESTING ELECTRIC SWITCH | 6-2 |
| TESTING DETECTION SYSTEM | 6-3 |

**VII. RECHARGE AND RESETTING PROCEDURES**

| CLEANUP PROCEDURES | 7-1 |
| RECHARGE | 7-1 – 7-3 |
| RESETTING | 7-3 – 7-4 |
| REPLACEMENT CARTRIDGE | 7-4 |

**VIII. MAINTENANCE EXAMINATION**

| SEMI-ANNUAL MAINTENANCE EXAMINATION | 8-1 – 8-3 |
| 12-YEAR MAINTENANCE EXAMINATION | 8-4 – 8-8 |

**IX. APPENDIX**

| SYSTEM SELECTION GUIDE | 9-1 – 9-4 |
| SYSTEM COMPONENT INDEX | 9-5 – 9-6.2 |
| PARTS LISTS | 9-7 – 9-10.2 |
| MULTIPLE NOZZLE FRYER PROTECTION CALCULATION EXAMPLES | 9-11 |
DESIGN AND APPLICATION

The ANSUL R-102 Restaurant Fire Suppression System is designed to provide fire protection for restaurant cooking appliances, hoods, and ducts. It is a pre-engineered group of mechanical and electrical components for installation by an authorized ANSUL distributor. The basic system consists of an ANSUL AUTOMAN regulated release assembly which includes a regulated release mechanism and a liquid agent storage tank housed within a single enclosure. Nozzles, detectors, cartridges, liquid agent, fusible links, pulley tees, and pulley elbows are supplied in separate packages in the quantities needed for each fire suppression system arrangement.

The system provides automatic actuation; or it can be actuated manually through a remote manual pull station. The system is also capable of shutting down appliances at system actuation. For appliance shutdown requirements, refer to the current version of NFPA 17A, “Standard For Wet Chemical Extinguishing Systems,” and NFPA 96, “Standard For Ventilation Control and Fire Protection of Commercial Cooking Operations.”

Additional equipment includes: remote manual pull station, mechanical and electrical gas valves, pressure switches, and electrical switches for automatic equipment and gas line shut-off. Accessories can be added, such as alarms, warning lights, etc., to installations where required.

The R-102 system suppresses fire by spraying the plenum area, the filters, cooking surfaces, and the exhaust duct system with a predetermined flow rate of ANSULEX Low pH Liquid Fire Suppressant. When the liquid agent is discharged onto a cooking appliance fire, it cools the grease surface, and reacts with the hot grease (saponification) forming a layer of soap-like foam on the surface of the fat. This layer acts as insulation between the hot grease and the atmosphere, thus helping to prevent the escape of combustible vapors.

Exhaust fans in the ventilating system should be left on. The forced draft of these fans assists the movement of the liquid agent through the ventilating system, thus aiding in the fire suppression process. These fans also provide a cooling effect in the plenum and duct after the fire suppression system has been discharged. The system is UL listed with or without fan operation. Make up or supply air fans, integral to the exhaust hood(s) being protected, shall be shut down upon system actuation.

Along with the fire suppression system, the total system design must include hand portable fire extinguisher(s) located within the cooking/restaurant area that can be used to manually suppress a fire that may be burning in an unprotected area. Class K extinguisher(s) must be provided for hazards where there is a potential for fires involving combustible cooking media (vegetable or animal oils and fats). Refer to NFPA 10, “Standard For Portable Fire Extinguisher,” for additional information.

UL LISTING

The R-102 Restaurant Fire Suppression System has been tested and is listed by Underwriters Laboratories, Inc. as a pre-engineered system. The system is in compliance with UL Test Standard 300. These tests require extinguishment of fires which are initiated in deep fat fryers, ranges, griddles, char-broilers, woks, upright broilers, chain-broilers, filters, plenum chambers, hoods, and ducts after pre-loading each appliance with a prescribed amount of cooking grease. Each fire is allowed to progress to maximum intensity before the fire suppression system is actuated.

DEFINITION OF TERMS

Actuation Gas Line: Piping from the ANSUL AUTOMAN Regulated Release Assembly which supplies nitrogen or carbon dioxide to the Regulated Actuator Assembly for multiple-tank system actuation.

Agent Tank: A pressure vessel containing the liquid agent.

ANSUL AUTOMAN Regulated Release Assembly (Electrical): An assembly which contains the regulated release mechanism, agent tank (ordered separately), expellant gas hose, solenoid, and electric switch within a metal enclosure. The enclosure contains knockouts to facilitate component hookups.

ANSUL AUTOMAN Regulated Release Assembly (Mechanical): An assembly which contains the regulated release mechanism, agent tank (ordered separately), and expellant gas hose within a metal enclosure. The enclosure contains knockouts to facilitate component hookups.

Authority Having Jurisdiction: The “authority having jurisdiction” is the organization, office, or individual responsible for “approving” equipment, an installation, or a procedure. The phrase “Authority Having Jurisdiction” is used in a broad manner since jurisdictions and “approval” agencies vary as do their responsibilities. Where public safety is primary, the “authority having jurisdiction” may be a federal, state, local, or other regional department or individual such as a fire chief, fire marshal, chief of a fire prevention bureau, labor department, health department, building official, electrical inspector, or others having statutory authority. For insurance purposes, an insurance company representative may be the “authority having jurisdiction.” In many circumstances the property owner or his designated agent assumes the role of the “authority having jurisdiction;” at government installations, the commanding officer or departmental official may be the “authority having jurisdiction.”

Blow-Off Cap: A cap which covers the end of the nozzle tip and prevents grease from plugging the nozzle orifice.

Branch Line: The agent distribution piping which extends from the supply line to the nozzle(s).

Bursting Disc: A disc installed in the tank adaptor which eliminates the siphoning of the agent up the pipe during extreme temperature variations.

Cartridge: A sealed, steel pressure vessel containing nitrogen or carbon dioxide gas used to pressurize the agent tank.

Cooking Appliance: Includes fryers, griddles, ranges, upright broilers, chain broilers, natural charcoal broilers, or char-broilers (electric, lava rock, gas-radiant, or mesquite).

Cooking Area: Cooking area is defined as the maximum surface that requires protection. Each type of appliance has a defined cooking area. For example, the maximum cooking area is the frypot for a fryer without a dripboard and the maximum cooking area is the combined frypot and dripboard for a fryer with a dripboard.

Conduit Offset Assembly: A pre-formed piece of conduit which can be installed between the ANSUL regulated release tank and the conduit to allow the wire rope for the detection, gas valve and remote manual pull station to be installed in a more convenient manner.

Depth: When referring to depth as a linear dimension, it is the horizontal dimension measured from front to back of the appliance or plenum.
DEFINITION OF TERMS (Continued)

Detector: A device which includes the detector bracket, detector linkage, and fusible link used for automatic operation of the fire suppression system.

Detector Linkage: A device used to support the fusible link.

Distribution Piping: Piping which delivers the extinguishing agent from the tank to each discharge nozzle. See also Supply or Branch lines.

Ducts (or Duct System): A continuous passageway for the transmission of air and vapors which, in addition to the containment components themselves, may include duct fittings, plenums, and/or other items or air handling equipment.

Electrostatic Precipitator: A device used to aid in the cleaning of the exhaust air. This device is normally installed at or near the base of the ventilation duct.

Expellant Gas Line: Piping and/or hose which supplies the nitrogen or carbon dioxide gas from the regulated release assembly/regulated actuator assembly to each agent tank.

Flow Number: Term used in system design to describe the flow capacity of each nozzle used to determine the quantity of tanks needed to cover a certain group of hazards.

Fusible Links: A form of fixed temperature heat detecting device employed to restrain the operation of a mechanical control until its designed temperature is reached.

Gas Valve: A device used to shut off the gas supply to the cooking equipment when the system is actuated.

Gas Valve Air Cylinder: An air cylinder, located in the release mechanism, which operates pneumatically to mechanically unlatch a mechanical gas valve actuator, causing the gas valve to close upon system actuation.

High Proximity: Indicates a distance (vertically) between the nozzle tip and the surface of the appliance being protected.

Hood: A device provided for cooking appliances to direct and capture grease-laden vapors and exhaust gases. It shall be constructed in a manner which meets the requirements of NFPA 96.

Liquid Agent: A potassium-based solution used for the knockdown and suppression of fire.

Low Proximity: Indicates a distance (vertically) between the nozzle tip and the surface of the appliance being protected.

Maximum Length of Cooking Appliance: The maximum dimension, on any side, which may be protected by one nozzle.

Maximum Piping: Specified length of piping and number of fittings which must not be exceeded for each system.

Medium Proximity: Indicates a distance (vertically) between the nozzle tip and the surface of the appliance being protected.

Minimum Piping: Minimum length of distribution piping required between the agent tank outlet and any nozzle protecting a griddle, range, or fryer.

Nozzle: A device designed to deliver the liquid agent with a specific flow rate and stream pattern.

Overlapping Protection: When discharge nozzles are spaced equally apart over one or more appliances requiring protection. Nozzles used in this manner provide area protection of eligible appliances within the protected area. Two types of overlapping protection are available: full hood continuous protection and group protection. Overlapping protection is in addition to appliance specific coverages.

Plenum: The space enclosed by the filters and the portion of the hood above the filters.

Pre-engineered System: NFPA 17A defines a pre-engineered system as one which has “...predetermined flow rates, nozzle pressures, and quantities of liquid agent.” The R-102 system, as prescribed by UL (Underwriter’s Laboratories), has specific pipe sizes, maximum and minimum pipe lengths and numbers of fittings, and number and types of nozzles. The hazards protected by this system are also specifically limited as to type and size by UL based upon actual fire tests. All limitations on hazards that can be protected and piping and nozzle configurations are contained in the R-102 installation and maintenance manual which is part of the UL listing.

Pulley Elbow: A device used to change the direction of the wire rope which runs between: the regulated release mechanism and the detectors, the regulated release mechanism and the mechanical gas valve, and/or the regulated release mechanism and the remote manual pull station.

Pulley Tee: A device used to change the direction of two wire ropes which run from a regulated release or a regulated actuator to two remote manual pull stations, or from two regulated releasors or regulated actuators to a single mechanical gas valve or from one regulated release or regulated actuator to two gas valves.

Regulated Actuator Assembly: An assembly which contains the regulator, pneumatic actuator, agent tank, and expellant gas hose within a metal enclosure. This assembly is used to pressurize additional agent tanks in a multiple tank system.

Regulated Release Mechanism: An enclosed device within the ANSUL AUTOMAN regulated release assembly which releases the expellant gas, activates alarms, and/or shuts off other devices when signaled automatically by a detector or manually with a remote pull station.

Regulator: A device used to regulate the pressure from the nitrogen cartridge into the agent tank(s) when the system is actuated.

Remote Manual Pull Station: A device which provides manual actuation of the system from a remote location.

Salamander Broiler: A broiler very similar in design to the upright broiler. A salamander broiler is used for general broiling of meats and fish, toasting, and holding/warming foods. Most contain a removable grease drip tray.

Silicone Lubricant: A heat-resistant organic compound used to lubricate O-rings, rubber and mechanical components.

Supply Line: The agent distribution piping which extends from the agent tank outlet and serves as a manifold for the branch lines.

Series Detector: Any detector located in-line between the regulated release assembly and the terminal detector.

Terminal Detector: The last in a series of detectors, or the only detector used in a single-detector system. This detector is thus named because it is at the point at which the wire rope ends, or “terminates.” There is only one terminal detector per detection system.

Transition: An extension of the hood or canopy which allows for the smooth transmission of gases, air, and vapors between the hood opening and the base of the ventilation duct.

Vent Plug: A device used to prevent pressure build-up within the agent tank or agent distribution lines due to temperature fluctuations.
There are three types of R-102 Restaurant Fire Suppression Systems:

1. Single-tank System
2. Double-tank System
3. Multiple-tank System

The type of system required for the particular installation will be determined through the guidelines covered in “System Design.” Additional equipment which may be required to complete the system design is explained in the “System Components” section. Additional devices covered are: remote manual pull stations, mechanical and electrical gas shut-off valves, electrical switches, and pressure switches.

**Single-Tank System**

The R-102 single-tank system is available with a stainless steel enclosure and consists of:

1. ANSUL AUTOMAN Regulated Release Assembly (Electrical or Mechanical)
2. Nitrogen Cartridge and/or Carbon Dioxide Cartridge
3. ANSULEX Low pH Liquid Fire Suppressant
4. Discharge Nozzles
5. Detection Components
6. Additional Devices (As Required)

The regulated release assembly contains the regulated release mechanism, agent tank, expellant gas hose for agent tank hookup, and enclosure knockouts to facilitate installing detection system and additional equipment. Refer to “System Components” section for individual component descriptions.

**Double-Tank System**

The R-102 double-tank system is available with a stainless steel enclosure and consists of:

1. ANSUL AUTOMAN Regulated Release Assembly (Electrical or Mechanical)
2. Nitrogen Cartridge and/or Carbon Dioxide Cartridge
3. ANSULEX Low pH Liquid Fire Suppressant
4. Enclosure or Bracket Assembly
5. Discharge Nozzles
6. Detection Components
7. Additional Devices (As Required)

The regulated release assembly contains the regulated release mechanism, agent tank, expellant gas hose for agent tank hookup, and enclosure knockouts to facilitate installing expellant piping, detection system, and additional equipment. The enclosure or bracket assembly is mounted separately but within the guidelines of the regulated release assembly expellant piping requirements to ensure simultaneous actuation of the system. Refer to “System Components” section for individual component descriptions.
TOTAL SYSTEM (Continued)

Multiple-Tank System

The R-102 multiple-tank system is available with a stainless steel enclosure and consists of:

1. ANSUL AUTOMAN Regulated Release Assembly
   (Electrical or Mechanical)
2. Nitrogen Cartridge(s) and/or Carbon Dioxide Cartridge(s)
3. Regulated Actuator Assembly(ies)
4. ANSULEX Low pH Liquid Fire Suppressant
5. Enclosure or Bracket Assembly(ies)
6. Discharge Nozzles
7. Detection Components
8. Additional Devices (As Required)

The regulated release assembly contains the regulated release mechanism, agent tank, expellant gas hose for agent tank hookup, and enclosure knockouts to facilitate installing actuation piping, expellant piping, detection system, and additional equipment.

Each regulated actuator assembly is mounted separately but within the guidelines of the regulated release assembly actuation/expellant gas piping requirements to ensure simultaneous actuation of the system. The assembly contains the pneumatic actuator, regulator, agent tank, expellant gas hose for agent tank hookup, and enclosure plugs to facilitate installing expellant piping.

Each enclosure or bracket assembly is mounted separately but within the guidelines of the regulated release assembly or regulated actuator assembly expellant gas piping requirements to ensure simultaneous actuation of the system. Refer to “System Components” section for individual component descriptions.
EXTINGUISHING AGENT

ANSULEX Low pH Liquid Fire Suppressant (1.5 gallon – Part No. 79694 or 3.0 gallon – Part No. 79372) is a potassium-based solution designed for fast knock-down and suppression of grease-related fires. The agent is shipped in plastic containers which provide one complete tank charge. (Refer to Section V, Page 5-2.1, for maximum agent fill capacity.) Agent storage life expectancy is twelve years. The distributor must record the batch numbers and date of shipment receipt to be filed with each installation record.

“ANSULEX” LOW pH LIQUID FIRE SUPPRESSANT

REGULATED RELEASE ASSEMBLY (MECHANICAL)

The ANSUL AUTOMAN Regulated Mechanical Release Assembly (Part No. 429853) contains the regulated release mechanism, expellant gas hose for agent tank hookup, and enclosure knockouts to facilitate installing actuation piping; expellant piping; detection system; and additional equipment. This regulated release assembly is used in single, double, and multiple-tank systems and must be mounted to a rigid surface. The release mechanism can be used to interconnect both the actuation and expellant gas lines as required per system design. The regulator is designed to allow a constant flow of gas into the tank at 110 psi (759 kPa) when the system is actuated. The agent tank must be ordered separately.

In single, double, and multiple-tank systems, the provided expellant gas hose connects the agent tank to the bottom outlet of the regulator. In double and multiple-tank system configurations, the back outlet of the regulator is used as an expellant gas feed for one additional tank-enclosure or tank-bracket hookup. The enclosure contains the required knockouts to facilitate this connection. If a pressure switch is to be attached to the regulator, additional fittings are required.

The tank is mounted within the enclosure. The tank contains an adaptor/tube assembly with a burst disc union. The burst disc helps prevent siphoning of the agent up the pipe due to significant temperature fluctuations in the area where the tank is located. The tank is mild steel and, under normal conditions, requires hydrostatic testing every twelve years.

The detection and additional equipment required per system design are connected to the release mechanism. The enclosure contains knockouts to facilitate detection and additional hookups.

The system can be actuated automatically or manually. Automatic actuation occurs when a fusible link within the detection system separates in a fire condition. Manual actuation of the system occurs when personnel pull on the remote manual pull station pull ring.

REGULATED RELEASE ASSEMBLY (ELECTRICAL)

The ANSUL AUTOMAN Regulated Electrical Release Assembly (Part No. 429856) is identical to the mechanical version except it also contains a factory installed 120 VAC solenoid and electrical switch.

The solenoid is used to provide electrical actuation of the release mechanism. The electric switch is used to protect the solenoid by opening the circuit to the solenoid once the system is fired. Additional electrical switches can be added as required for automatic equipment and gas shut-off accessories, as well as initiating audible and visual alarms.

NOTE: AGENT TANK MUST BE ORDERED SEPARATELY OR SEE PAGE 3-4

* NOTE: ANSUL AUTOMAN Regulated Electrical Release, Part No. 429856, is not intended to be used with electric detection.
SECTION III – SYSTEM COMPONENTS

REMOTE MECHANICAL RELEASE
The Remote Mechanical Release, Part No. 433485, is used to actuate up to five (5) R-102 regulated actuators. The remote mechanical release utilizes a 101-10 carbon dioxide cartridge as the actuation pressure to operate the regulated actuators. The release is housed in a stainless steel enclosure.

SINGLE TANK ENCLOSURE ASSEMBLY
The Single Tank Enclosure Assembly (Part No. 429870) is used in double and multiple-tank systems and must be mounted to a rigid surface near the regulated release or regulated actuator assembly its expellant gas line will be connected to.

The enclosure is designed for mounting either a 1.5 gallon (Part No. 429864) or a 3.0 gallon tank (Part No. 429862) in a minimum amount of space.

REGULATED ACTUATOR ASSEMBLY
The Regulated Actuator Assembly (Part No. 429850) contains the regulator, pneumatic actuator, expellant gas hose for agent tank hookup, and enclosure knockouts to facilitate installing expellant piping. This assembly is used in multiple-tank systems and must be mounted to a rigid surface.

The regulator contains two outlets 135° apart. One outlet is used to interconnect the expellant gas hose to the enclosed agent tank. The other outlet connects an expellant gas line to an additional enclosure or bracket assembly. The regulator is designed to allow a constant flow of nitrogen into each agent tank connected (two tanks maximum) at 110 psi (759 kPa).

The pneumatic actuator is designed to puncture the expellant gas cartridge seal upon receiving pressure from the regulated release assembly actuation piping. The enclosure contains a knockout to facilitate distribution piping hookup.

RED PAINTED BRACKET ASSEMBLY
The Bracket Assembly (Part No. 429878) is used in double and multiple-tank systems and must be mounted to a rigid surface near the regulated release assembly or regulated actuator assembly that its expellant gas line will be connected to.
AGENT TANK ASSEMBLY

The agent tank shipping assembly (3-Gallon, Part No. 429862, and 1.5 Gallon, Part No. 429864) consists of a stainless steel tank and an adaptor/tube assembly. The adaptor/tube assembly contains a burst disc. The burst disc prevents agent leakage due to significant temperature fluctuations in the area where the tank is located. Under normal conditions, the tank requires hydrostatic testing every twelve years. The date of manufacture is stamped on the tank nameplate.

The tank is shipped uncharged and must be filled with only ANSULEX Low pH Liquid Fire Suppressant during installation.

OEM RELEASE/BRACKET ASSEMBLY

The OEM Regulated Mechanical Release/Bracket Assembly, Part No. 79493, contains the same regulated release mechanism as the standard ANSUL AUTOMAN Regulated Release Assembly. The OEM Regulated Electrical Release/Bracket Assembly, Part No. 418054*, is identical to the mechanical version except it contains a factory installed 120 VAC solenoid and electrical switch. These release/bracket assemblies must be installed in a suitable equipment enclosure either horizontally or vertically. They contain all the necessary mounting and conduit holes needed to fully install the assembly. The agent tank is installed separately and need not be bracketed once it is piped and filled. **Note:** OEM Release/Bracket Assembly must be installed high enough in cabinet so that there is sufficient room to install and remove cartridge.

* Note: OEM Regulated Electrical Release/Bracket Assembly, Part No. 418054, is not intended to be used with electric detection.

OEM REGULATED ACTUATOR ASSEMBLY

The OEM Regulated Actuator Assembly, Part No. 418691, includes the regulator, pneumatic actuator, expellant gas hose and OEM bracket. Also available is an OEM Regulated Actuator Assembly with all the above mentioned components except for the bracket. This assembly is Part No. 418522.

TWO TANK ENCLOSURE ASSEMBLY

The Two Tank Enclosure Assembly, Part No. 429872, consists of two expellant gas hoses, two grommets, and the mounting enclosure. The assembly is used in 9 gallon systems. It can be coupled with a 3-gallon regulated release assembly or a 3-gallon regulated actuator assembly to give a total of 9 gallons of agent. Agent tanks must be ordered separately.

The tank enclosure is designed to mount in a minimum amount of space.
24 VDC REGULATED RELEASE ASSEMBLY (ULC APPROVED ONLY)

The 24 VDC Regulated Release Assembly, Part No. 429859, is used where electric, thermostat detection is required via the use of a releasing control unit. This assembly consists of a 24 VDC ANSUL AUTOMAN II-C regulated release mechanism, expellant gas hose, and enclosure knockouts to facilitate installing actuation piping, expellant piping, detection system, and additional equipment. Agent tank must be ordered separately.

The system can be actuated automatically or manually. Automatic actuation occurs when the control panel receives a signal from the detection circuit. The panel then sends an electrical signal to the 24 VDC regulated release, causing it to actuate. When actuation occurs, the gas cartridge is punctured, pressurizing the agent tank and discharging the agent through the distribution piping. Manual actuation of the system occurs when personnel pull on the remote manual pull station pull ring.

ADDITIONAL SHIPPING ASSEMBLIES

Several complete shipping assemblies are available containing both the release or actuator mechanism and the agent tank. When ordering a complete shipping assembly, order the following part numbers:

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>Shipping Wt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>430299</td>
<td>3.0 Gallon Mechanical Release Assembly including: 429853 Mechanical Regulated Release Assembly, 429862 3.0 Gallon Tank Assembly</td>
<td>33 (15)</td>
</tr>
<tr>
<td>430300</td>
<td>1.5 Gallon Mechanical Release Assembly including: 429853 Mechanical Regulated Release Assembly, 429864 1.5 Gallon Tank Assembly</td>
<td>30 (14)</td>
</tr>
<tr>
<td>430309</td>
<td>3.0 Gallon Regulated Actuator Assembly including: 429850 Regulated Actuator Assembly, 429862 3.0 Gallon Tank Assembly</td>
<td>36 (16)</td>
</tr>
<tr>
<td>430316</td>
<td>1.5 Gallon Stainless Steel Enclosure Assembly including: 429870 Single Tank Mounting Box Assembly, 429864 1.5 Gallon Tank Assembly, 418511 Hose Assembly</td>
<td>18 (8)</td>
</tr>
<tr>
<td>430317</td>
<td>3.0 Gallon Stainless Steel Enclosure Assembly including: 429870 Single Tank Mounting Box Assembly, 429862 3.0 Gallon Tank Assembly, 418511 Hose Assembly</td>
<td>20 (9)</td>
</tr>
<tr>
<td>430324</td>
<td>6.0 Gallon Stainless Steel Enclosure Assembly including: 429872 Two Tank Mounting Box Assembly, 429862 3.0 Gallon Tank Assembly (2)</td>
<td>40 (18)</td>
</tr>
<tr>
<td>430332</td>
<td>3.0 Gallon Mounting Bracket Shipping Assembly including: 429878 3.0 Gallon Mounting Bracket Assembly, 429862 3.0 Gallon Tank Assembly</td>
<td>20 (9)</td>
</tr>
</tbody>
</table>
GAS CARTRIDGES

The R-102 system uses gas cartridges to store nitrogen or carbon dioxide expellant gases under pressure until the system is actuated, at which time the cartridge seal is punctured and the released gas expels liquid agent from one or more tanks through the discharge piping and out the discharge nozzles.

Four nitrogen gas cartridges and three carbon dioxide gas cartridges are available as shown in Figure 13.

Cartridges noted as TC/DOT are both Transport Canada (TC) and Department of Transportation (DOT) approved. Cartridges noted as DOT are Department of Transportation approved only.

Cartridge selection options are provided in Section IV under Tank and Cartridge Requirements.

NITROGEN GAS CARTRIDGES

<table>
<thead>
<tr>
<th>Part No.*</th>
<th>Part No.*</th>
</tr>
</thead>
<tbody>
<tr>
<td>423429</td>
<td>423435</td>
</tr>
<tr>
<td>423493</td>
<td>423491</td>
</tr>
</tbody>
</table>

CARBON DIOXIDE CARTRIDGES

<table>
<thead>
<tr>
<th>Part No.*</th>
<th>Part No.*</th>
</tr>
</thead>
<tbody>
<tr>
<td>423439</td>
<td>423441</td>
</tr>
</tbody>
</table>

NOZZLES

There are 11 types of discharge nozzles each designed to distribute the liquid agent in a uniform pattern throughout the hazard area:

1. 1W Nozzle
2. 1N Nozzle
3. 1/2N Nozzle
4. 3N Nozzle
5. 2W Nozzle
6. 230 Nozzle
7. 245 Nozzle
8. 260 Nozzle
9. 290 Nozzle
10. 2120 Nozzle
11. 1F Nozzle

Although these nozzles are similar in appearance and have certain common parts, the tip of each nozzle is designed for a specific application and must only be used in those areas. See Nozzle Application Chart in Section IV – System Design, for individual nozzle usage.

<table>
<thead>
<tr>
<th>Nozzle</th>
<th>Part No.*</th>
<th>Stamp No.</th>
<th>Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>1W Nozzle</td>
<td>419336</td>
<td>1W</td>
<td>1 Chrome-Plated Body</td>
</tr>
<tr>
<td>1N Nozzle</td>
<td>419335</td>
<td>1N</td>
<td>1 Chrome-Plated Body</td>
</tr>
<tr>
<td>1/2N Nozzle</td>
<td>419334</td>
<td>1/2N</td>
<td>1/2 Chrome-Plated Body</td>
</tr>
<tr>
<td>3N Nozzle</td>
<td>419338</td>
<td>3N</td>
<td>3 Chrome-Plated Body</td>
</tr>
<tr>
<td>2W Nozzle</td>
<td>419337</td>
<td>2W</td>
<td>2 Chrome-Plated Body</td>
</tr>
<tr>
<td>230 Nozzle</td>
<td>419339</td>
<td>230</td>
<td>2 Chrome-Plated Body</td>
</tr>
<tr>
<td>245 Nozzle</td>
<td>419340</td>
<td>245</td>
<td>2 Chrome-Plated Body</td>
</tr>
<tr>
<td>260 Nozzle</td>
<td>419341</td>
<td>260</td>
<td>2 Chrome-Plated Body</td>
</tr>
<tr>
<td>290 Nozzle</td>
<td>419342</td>
<td>290</td>
<td>2 Chrome-Plated Body</td>
</tr>
<tr>
<td>2120 Nozzle</td>
<td>419343</td>
<td>2120</td>
<td>2 Chrome-Plated Body</td>
</tr>
<tr>
<td>1F Nozzle</td>
<td>419333</td>
<td>1F</td>
<td>1 Chrome-Plated Body</td>
</tr>
</tbody>
</table>

* Nozzle stamping may contain an additional letter indicating a vendor's code.

SILICONE LUBRICANT

Dow Corning Compound 111, Part No. 78112, is available in a 5.3-ounce tube. Compound has excellent qualities for sealing and lubricating system components.
SECTION III – SYSTEM COMPONENTS

SWIVEL ADAPTOR
The Swivel Adaptor Assembly, Part No. 418569, consists of a swivel nut, swivel body and swivel ball. All are chrome-plated. The swivel adaptor allows any nozzle to be rotated approximately 30° in all directions. Swivel Adaptors must be ordered as a Swivel Adaptor Shipping Assembly, Part No. 423572, which contains 25 Swivel Adaptors.

RUBBER BLOW-OFF CAPS
The Rubber Blow-Off Cap, Part No. 77676, help keep the orifice of the nozzle free of grease or other substances that could interfere with agent distribution. A retaining strap attaches the blow-off cap to the nozzle. Rubber Blow-Off Caps must be ordered as a Shipping Assembly, Part No. 77695, which contains 50 blow-off caps, or Part No. 77411, which contains 12 blow-off caps.

CB METAL BLOW-OFF CAP
The CB Metal Blow-off Cap Package, Part No. 433208, is used for all high temperature environments. The metal blow-off cap contains a special O-ring placed inside the cap which integrates with the nozzle to create a seal and to help hold the blow-off cap in position.

The CB Metal Blow-off Cap Package, Part No. 433208, contains 10 blow-off caps.

Also available is a 10 pack of CB Stainless Steel Blow-Off Caps, Part No. 434707.

CONDUIT OFFSET ASSEMBLY
The conduit offset assembly, Part No. 79825, is used to change direction of the wire rope on detection, mechanical gas valve, and remote pull station lines. The conduit offset assembly can only be used in the area where the conduit attaches to the regulated release assembly. When using the conduit offset assembly, the maximum number of pulley elbows is still allowed. The Conduit Offset Shipping Assembly, Part No. 79825, consists of 6 conduit offsets.

"QUIK-SEAL" ADAPTOR
The "Quik-Seal" adaptor is a listed mechanical bulkhead fitting that produces a liquid-tight seal around both distribution piping and detection conduit which runs through restaurant hoods and ducts. The "Quik-Seal" adaptor accepts threaded pipe or conduit. The adaptor is available for 1/4 in. (Part No. 78195), 3/8 in. (Part No. 77284), 1/2 in. (Part No. 77286), or 3/4 in. (Part No. 77288) pipe or conduit sizes. When using with EMT conduit, a conduit connector must be installed in each end of the adaptor. The "Quik-Seal" Adaptor Shipping Assembly must be ordered as stated below:

<table>
<thead>
<tr>
<th>Size</th>
<th>Part No.</th>
<th>Qty.</th>
<th>Hole Size Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4 in.</td>
<td>78196</td>
<td>24</td>
<td>3/4 in.</td>
</tr>
<tr>
<td>3/8 in.</td>
<td>77285</td>
<td>24</td>
<td>1 1/8 in.</td>
</tr>
<tr>
<td>1/2 in.</td>
<td>77287</td>
<td>24</td>
<td>1 1/8 in.</td>
</tr>
<tr>
<td>3/4 in.</td>
<td>77289</td>
<td>24</td>
<td>1 3/8 in.</td>
</tr>
</tbody>
</table>

FIGURE 15

FIGURE 16

FIGURE 17

FIGURE 18

FIGURE 19
“COMPRESSION-SEAL” ADAPTOR

This adaptor is a mechanical bulkhead fitting that produces a liquid-tight seal around pipe and conduit when installing distribution piping and detection conduit through restaurant hoods and ducts. The “Compression-Seal” adaptor is a straight-through design requiring no cutting or threading of conduit or pipe. The adaptor is available for pipe sizes of 1/4 in. (Part No. 79148), 3/8 in. (Part No. 79150), 1/2 in. (Part No. 79146), and EMT conduit size of 1/2 in. (Part No. 79152). Each “Compression-Seal” Adaptor Shipping Assembly must be ordered as stated below:

<table>
<thead>
<tr>
<th>Size</th>
<th>Shipping Assembly Part No.</th>
<th>Qty.</th>
<th>Hole Size Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4 in. Pipe / 1/2 in. tube</td>
<td>79149</td>
<td>24</td>
<td>3/4 in.</td>
</tr>
<tr>
<td>3/8 in. Pipe / 5/8 in. tube</td>
<td>79151</td>
<td>24</td>
<td>1 1/8 in.</td>
</tr>
<tr>
<td>1/2 in. Pipe</td>
<td>79147</td>
<td>24</td>
<td>1 1/8 in.</td>
</tr>
<tr>
<td>1/2 in. EMT Conduit</td>
<td>79153</td>
<td>24</td>
<td>1 1/8 in.</td>
</tr>
</tbody>
</table>

FIGURE 20 000155

“HOOD SEAL” ADAPTOR ASSEMBLY

This adaptor is a mechanical bulkhead fitting that produces a liquid-tight seal around 1/2 in. EMT conduit when installing the detection line through restaurant hoods and duct. The adaptor accepts a high temperature pulley elbow and, when used, correctly positions the elbow or conduit in line with the conduit adaptor hole in the detector bracket. The “Hood Seal” eliminates the need for multiple elbows when penetrating the top of a hood when installing the detection line. “Hood Seal” Adaptors are available in quantities of 6 as Shipping Assembly Part No. 423253.

FIGURE 21 000156
DETECTORS
The detector consists of three basic components: the bracket, linkage, and fusible link. (Fusible links are not included and must be ordered separately.) The bracket holds the entire assembly to the mounting surface. The linkage is used to support the fusible link. The fusible link is designed to separate at a specific temperature and release the wire rope, thereby actuating the regulated release mechanism.

There are three styles of detectors available: the clip-on style, the hinged style, and the scissor style.

The clip-on style allows the wire rope to be strung completely through the detection system conduit and brackets first and the detector linkage assemblies are then clipped on later.

The hinged style detector requires the wire rope to be strung to the detector bracket, and then “threaded” through the linkage assembly before continuing to the next detector bracket.

The scissor style allows the wire rope to be strung completely through the detection system conduit and brackets first and the detector linkage assemblies are then clipped on later.

Each style of detector consists of two types of assemblies:

The Terminal Detector (Part No. 56838, 15375, or 417368) includes a test link and is placed last in a series of detectors. This detector is sometimes referred to as the end-of-line detector and is thus named because it is at the point at which the wire rope “terminates,” or is anchored at the detector bracket. Only one terminal detector is required per detection system.

The Series Detector (Part No. 56837, 15373, or 417369) is any detector located in-line between the regulated release assembly and the terminal detector.

When using Part No. 56837 and 56838 style detectors, a total of 12 detectors can be in one detection system: 11 series detectors, Part No. 56837 and 1 terminal detector, Part No. 56838.

When using Part No. 15373 and 15375 style detectors, a total of 5 detectors can be in one detection system: 4 series detectors, Part No. 15373 and 1 terminal detector, Part No. 15375.

When using Part No. 417368 and 417369 style detectors, a total of 15 detectors can be in one detection system: 14 series detectors, Part No. 417369 and 1 terminal detector, Part No. 417368.

PULLEY ELBOWS
There are two types of pulley elbows used to change the direction of the wire rope by 90°. ANSUL recommends for temperatures not in excess of 700 °F (371 °C). Part No. 415670 has socket ends with set screws for 1/2 in. conduit, and Part No. 423250 has compression ring ends also for 1/2 in. conduit. Pulley elbows must be ordered in quantities of 50 as Shipping Assembly Part No. 415671 (socket end type) and Part No. 423251 (compression end type).
PULLEY TEE

The Pulley Tee (Part No. 427929) is used to change the direction of two wire ropes by 90°. It must be used in areas where the temperatures are within the range of 32 °F to 130 °F (0 °C to 54 °C). Pulley tees can be used in mechanical gas valve actuation lines and remote manual pull station lines. Pulley tees cannot be used within a detection line.

STAINLESS STEEL CABLE

The 1/16 in. stainless steel cable is run from the terminal detector, through conduit, all series detectors and pulley elbows, and into the regulated release mechanism trip lever. When any fusible link separates, the tension on the cable is relaxed, and the trip lever actuates the regulated release mechanism. The cable can also be used for mechanical gas valves and remote manual pull stations. The cable is available in 50 ft. (15 m) (Part No. 15821) and 500 ft. (152.4 m) (Part No. 79653) lengths.

REMOTE MANUAL PULL STATION

The remote manual pull station (Part No. 4835 or Part No. 54011) is required for manual actuation of the regulated release assembly. The remote manual pull station should be mounted at a point of egress and positioned at a height determined by the authority having jurisdiction. Trim rings, Part No. 427074 (pack of 10), are available.

MECHANICAL GAS VALVES

The mechanical gas valves are designed to shut off the flow of gas to the appliances upon actuation of the regulated release assembly. The valves are available in sizes of 3/4 in., 1 in., 1 1/4 in., 1 1/2 in., and 2 in. ANSUL style; and 2 1/2 in. and 3 in. Asco style. The valves are rated for natural and LP gas. Both styles are UL Listed and includes the air cylinder, tubing, and fittings for connection to the release mechanism.

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>Maximum Operating Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>55598</td>
<td>3/4 in. Gas Valve (ANSUL)</td>
<td>10 psi (.69 bar)</td>
</tr>
<tr>
<td>55601</td>
<td>1 in. Gas Valve (ANSUL)</td>
<td>10 psi (.69 bar)</td>
</tr>
<tr>
<td>55604</td>
<td>1 1/4 in. Gas Valve (ANSUL)</td>
<td>10 psi (.69 bar)</td>
</tr>
<tr>
<td>55607</td>
<td>1 1/2 in. Gas Valve (ANSUL)</td>
<td>10 psi (.69 bar)</td>
</tr>
<tr>
<td>55610</td>
<td>2 in. Gas Valve (ANSUL)</td>
<td>10 psi (.69 bar)</td>
</tr>
<tr>
<td>25937</td>
<td>2 1/2 in. Gas Valve (ASCO)</td>
<td>5 psi (.35 bar)</td>
</tr>
<tr>
<td>25938</td>
<td>3 in. Gas Valve (ASCO)</td>
<td>5 psi (.35 bar)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Valve Size</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/4 in.</td>
<td>3 3/4 (95.3)</td>
<td>6 3/8 (161.9)</td>
<td>5 1/2 (139.7)</td>
</tr>
<tr>
<td>1 in.</td>
<td>3 3/4 (95.3)</td>
<td>6 3/8 (161.9)</td>
<td>5 1/2 (139.7)</td>
</tr>
<tr>
<td>1 1/4 in.</td>
<td>4 7/8 (123.8)</td>
<td>7 3/8 (187.3)</td>
<td>6 3/8 (161.9)</td>
</tr>
<tr>
<td>1 1/2 in.</td>
<td>4 7/8 (123.8)</td>
<td>7 3/8 (187.3)</td>
<td>6 3/8 (161.9)</td>
</tr>
<tr>
<td>2 in.</td>
<td>5 7/8 (149.2)</td>
<td>7 7/8 (200.0)</td>
<td>6 11/16 (169.9)</td>
</tr>
<tr>
<td>2 1/2 in.</td>
<td>7 13/16 (198.4)</td>
<td>-----</td>
<td>9 1/16 (230.2)</td>
</tr>
<tr>
<td>3 in.</td>
<td>7 25/32 (197.6)</td>
<td>-----</td>
<td>9 1/16 (230.2)</td>
</tr>
</tbody>
</table>

FIGURE 24

FIGURE 25

FIGURE 26
SECTION III – SYSTEM COMPONENTS

ELECTRICAL GAS VALVES

The electrical gas valves are designed to shut off the flow of either natural or LP gas to the appliances upon actuation of the regulated release assembly. The valves are available in sizes of 3/4 in., 1 in., 1 1/2 in., 2 in., and 3 in. The valve is held open by an energized solenoid and upon system actuation, the switch contacts in the regulated release assembly open, thus de-energizing the circuit to the gas valve solenoid, causing the valve to close. Valves are available in 120 VAC and are UL Listed.

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>Max. Operating Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>13707</td>
<td>3/4 in. Solenoid Gas Valve (ASCO)</td>
<td>25 psi (1.7 bar)</td>
</tr>
<tr>
<td>13708</td>
<td>1 in. Solenoid Gas Valve (ASCO)</td>
<td>25 psi (1.7 bar)</td>
</tr>
<tr>
<td>550360</td>
<td>1 1/4 in. Solenoid Gas Valve (ASCO)</td>
<td>25 psi (1.7 bar)</td>
</tr>
<tr>
<td>13709</td>
<td>1 1/2 in. Solenoid Gas Valve (ASCO)</td>
<td>25 psi (1.7 bar)</td>
</tr>
<tr>
<td>13710</td>
<td>2 in. Solenoid Gas Valve (ASCO)</td>
<td>25 psi (1.7 bar)</td>
</tr>
<tr>
<td>550363</td>
<td>2 1/2 in. Solenoid Gas Valve (ASCO)</td>
<td>5 psi (.35 bar)</td>
</tr>
<tr>
<td>17643</td>
<td>3 in. Solenoid Gas Valve (ASCO)</td>
<td>5 psi (.35 bar)</td>
</tr>
</tbody>
</table>

ELECTRICAL SWITCHES

The electrical switches are intended for use with electric gas valves, alarms, contactors, lights, contractor supplied electric power shut-off devices and other electrical devices that are designed to shut off or turn on when the system is actuated.

Switches are available in kits: One Switch Kit, Part No. 423878, Two Switch Kit, Part No. 423879, Three Switch Kit, Part No. 423880, and Four Switch Kit, Part No. 423881. Mounting hardware and 12 in. (305 mm) long wire leads are provided with each kit. Each switch has a set of single-pole, double-throw contacts rated at:

<table>
<thead>
<tr>
<th>UL/cUL/CSA Rating</th>
<th>ENEC Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>250 VAC, 21A Resistive</td>
<td>IE4T105µ Approved</td>
</tr>
<tr>
<td>250 VAC, 2 HP</td>
<td>250V, 21A Resistive</td>
</tr>
<tr>
<td>125 VAC, 1 HP</td>
<td>8A Motor Load</td>
</tr>
</tbody>
</table>

MANUAL RESET RELAY

The Manual Reset Relay, Part No. 426151, is required when using an electrical gas valve shut-off system. After the electric gas valve has closed, either due to system actuation or power failure, the valve cannot be re-opened, allowing gas to flow, until the reset relay button is manually pressed, re-energizing the circuit. The reset relay is available 120 VAC. The manual reset relay is also recommended for electrical shut down.

ALARM INITIATING SWITCH

The Alarm Initiating Switch Kit, Part No. 428311, can be field mounted within the ANSUL AUTOMAN release. This switch must be used to close a supervised alarm circuit to the building main fire alarm panel when the ANSUL AUTOMAN release actuates. This action will signal the fire alarm panel that there was a system actuation in the kitchen area. The switch kit contains all necessary mounting components along with a mounting instruction sheet. The switch is rated 50 mA, 28 VDC.

FIGURE 27

FIGURE 28

FIGURE 29

FIGURE 30
REGULATOR TEST KIT

The Test Kit Assembly (Shipping Part No. 56972) is required to test the regulator setting and nitrogen flow during 12-year maintenance examinations. This will ensure that the regulator is functioning properly.

FUSIBLE LINK

Select correct UL Listed fusible link(s) for installation in detector(s) according to the temperature condition chart below:

<table>
<thead>
<tr>
<th>K STYLE</th>
<th>Fusible Link</th>
<th>To Be Used</th>
<th>Where</th>
<th>Temperature</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link</td>
<td>Shipping</td>
<td>Assembly</td>
<td>Part No.</td>
<td>Part No.</td>
<td>Rating</td>
</tr>
<tr>
<td>415739 (1)</td>
<td>415739 (1)</td>
<td>165 °F (74 °C)</td>
<td>100 °F (38 °C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>415740 (1)</td>
<td>415740 (1)</td>
<td>212 °F (100 °C)</td>
<td>150 °F (66 °C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>415741 (1)</td>
<td>415744 (25)</td>
<td>280 °F (138 °C)</td>
<td>225 °F (107 °C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▼ 415742 (1)</td>
<td>415745 (25)</td>
<td>360 °F (182 °C)</td>
<td>290 °F (143 °C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▼ 415743 (1)</td>
<td>415746 (25)</td>
<td>450 °F (232 °C)</td>
<td>360 °F (182 °C)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ML STYLE</th>
<th>Fusible Link</th>
<th>To Be Used</th>
<th>Where</th>
<th>Temperature</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link</td>
<td>Shipping</td>
<td>Assembly</td>
<td>Part No.</td>
<td>Part No.</td>
<td>Rating</td>
</tr>
<tr>
<td>550368 (1)</td>
<td>551522 (10)</td>
<td>165 °F (74 °C)</td>
<td>100 °F (38 °C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>550365 (1)</td>
<td>551523 (10)</td>
<td>212 °F (100 °C)</td>
<td>150 °F (66 °C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>550366 (1)</td>
<td>551524 (10)</td>
<td>280 °F (138 °C)</td>
<td>225 °F (107 °C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▼ 550009 (1)</td>
<td>551525 (10)</td>
<td>360 °F (182 °C)</td>
<td>290 °F (143 °C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▼ 550367 (1)</td>
<td>551526 (10)</td>
<td>450 °F (232 °C)</td>
<td>360 °F (182 °C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56816 (1)</td>
<td>73867 (25)</td>
<td>500 °F (260 °C)</td>
<td>400 °F (204 °C)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MAXIMUM REGISTERING THERMOMETER

The Maximum Registering Thermometer, Part No. 15240, is used to indicate the highest normal temperature for the protected area. Once this is established, the correct rated fusible link can be chosen.

HOSE/GROMMET PACKAGE

The Hose/Grommet Package, Part No. 418511, consists of a 24 in. rubber hose and 2 (two) grommets. This package is required when mounting an AUTOMAN Regulated Release (or Regulated Actuator) and a tank enclosure (or tank bracket) side by side in either a manifolded system or an independent piping system.

BURSTING DISC

The R-102 Bursting Disc is installed in the tank adaptor assembly. The bursting disc eliminates the siphoning of the agent up the pipe during extreme temperature variations. The bursting discs are available in packs of 10, Part No. 417911.

NOZZLE AIMING DEVICE

The Nozzle Aiming Device, Part No. 431992, is available to properly aim each nozzle to the correct aiming point. The device clamps to the nozzle and emits a small laser light that reflects on the surface that it is aiming at. The nozzle can then be rotated to point at a predetermined aiming point and then tightened to hold that angle. The aiming device adaptor attaches to the nozzle. The shipping assembly consists of the aiming device and the adaptor.

STAINLESS STEEL ACTUATION HOSE

The Stainless Steel Actuation Hose is used to connect the actuation line compression tees between each pneumatic actuator. The hose has the same thread, 7/16-20, as the fittings. The actuation hose allows flexibility between the AUTOMAN and each regulated actuator.

<table>
<thead>
<tr>
<th>Hose Part No.</th>
<th>Length</th>
<th>Couplings</th>
</tr>
</thead>
<tbody>
<tr>
<td>31809</td>
<td>16 in. (41 cm)</td>
<td>7/16-20 x 7/16-20 Females</td>
</tr>
<tr>
<td>32335</td>
<td>20 in. (51 cm)</td>
<td>7/16-20 x 7/16-20 Females</td>
</tr>
<tr>
<td>32336</td>
<td>24 in. (61 cm)</td>
<td>7/16-20 x 7/16-20 Females</td>
</tr>
<tr>
<td>430815</td>
<td>42 in. (107 cm)</td>
<td>7/16-20 Female x 1/4 in. NPT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fitting Part No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31810</td>
<td>Male Elbow (7/16-20 x 1/4 in. NPT)</td>
</tr>
<tr>
<td>31811</td>
<td>Male Tee (7/16-20 x 7/16-20 x 1/4 in. NPT)</td>
</tr>
<tr>
<td>▼ 415371</td>
<td>Tee (7/16-20 x 1/8 in. Male NPT x 1/8 in. Female NPT)</td>
</tr>
<tr>
<td>32338</td>
<td>Male Straight Connector (7/16-20 x 1/4 in. NPT)</td>
</tr>
<tr>
<td>25627</td>
<td>1/4 in. Check Valve</td>
</tr>
</tbody>
</table>
SYSTEM DESIGN

The ANSUL R-102 Restaurant Fire Suppression System may be used on a number of different types of restaurant cooking appliances and hood and duct configurations. The design information listed in this section deals with the limitations and parameters of this pre-engineered system. Those individuals responsible for the design of the R-102 system must be trained and hold a current ANSUL certificate in an R-102 training program.

The R-102 and the PIRANHA systems use compatible agents and components, therefore, they may be used together for cooking appliance, hood, and duct protection. The primary ANSUL AUTOMAN Release can be either an R-102 or a PIRANHA ANSUL AUTOMAN Release and can actuate up to two additional R-102 or PIRANHA Regulated Actuators. In systems utilizing a 101 remote release, any combination of the maximum number of regulated actuators can be used.

- Both systems must actuate simultaneously.
- Each system must be designed and installed per its appropriate manual.
- Adjacent appliances requiring protection must be protected with the same type of system, either R-102 or PIRANHA, unless the center-to-center spacing between the adjacent R-102 and PIRANHA nozzles is no less than 36 inches.
- When appliances are protected with R-102 nozzles, the hood and connecting duct above those appliances cannot be protected with PIRANHA nozzles.
- Mixing systems in a common plenum is not allowed.

One of the key elements for restaurant fire protection is a correct system design. This section is divided into ten sub-sections: Nozzle Placement Requirements, Tank Quantity Requirements, Actuation and Expellant Gas Line Requirements, Distribution Piping Requirements, Detection System Requirements, Manual Pull Station Requirements, Mechanical Gas Valve Requirements, Electrical Gas Valve Requirements, and Electrical Switch Requirements. Each of these sections must be completed before attempting any installation. System design sketches should be made of all aspects of design for reference during installation.

NOZZLE PLACEMENT REQUIREMENTS

This section gives guidelines for nozzle type, positioning, and quantity for duct, plenum, and individual appliance protection. This section must be completed before determining tank quantity and piping requirements.

Duct Protection – Single Nozzle

All duct protection is UL listed without limitation of maximum duct length (unlimited length). This includes all varieties of ductworks both horizontal and vertical including ducts that run at angles to the horizontal and ducts with directional bends.

The R-102 system uses different duct nozzles depending on the size of duct being protected.

GENERAL INFORMATION

1. Nozzles must be located 2-8 in. (5-20 cm) into the center of the duct opening, discharging up. See Figure 1.

2. In installations where a UL listed damper assembly is employed, the duct nozzle can be installed beyond the 8 in. (20 cm) maximum, to a point just beyond the damper assembly that will not interfere with the damper. Exceeding the maximum of 8 in. (20 cm) in this way will not void the UL listing of the system.

3. Previously listed 3 flow number and 5 flow number duct protection detailed in earlier published manual, Part No. 418087-06, can also still be utilized.

<table>
<thead>
<tr>
<th>DUCT SIZES UP TO 50 IN. (127 cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERIMETER/</td>
</tr>
<tr>
<td>• One 1W nozzle (Part No. 419336) = one flow number</td>
</tr>
<tr>
<td>• 50 in. (127 cm) perimeter maximum</td>
</tr>
<tr>
<td>• 16 in. (41 cm) diameter maximum</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DUCT SIZES UP TO 100 IN. (254 cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERIMETER/</td>
</tr>
<tr>
<td>• One 2W Nozzle (Part No. 419337) = two flow numbers</td>
</tr>
<tr>
<td>• 100 in. (254 cm) perimeter maximum</td>
</tr>
<tr>
<td>• 32 in. (81.3 cm) diameter maximum</td>
</tr>
</tbody>
</table>

The chart below shows the maximum protection available from each duct nozzle.

<table>
<thead>
<tr>
<th>Description</th>
<th>Part No.</th>
<th>3.0 Gallon System</th>
<th>1.5 Gallon System</th>
</tr>
</thead>
<tbody>
<tr>
<td>2W Nozzle</td>
<td>419337</td>
<td>Maximum 100 in. (254 cm) Perimeter</td>
<td>Maximum 100 in. (254 cm) Perimeter</td>
</tr>
<tr>
<td>1W Nozzle</td>
<td>419336</td>
<td>Maximum 50 in. (127 cm) Perimeter</td>
<td>Maximum 50 in. (127 cm) Perimeter</td>
</tr>
</tbody>
</table>
**Duct Protection – Multiple Nozzle**

**DUCT SIZES UP TO 135 IN. (343 cm) PERIMETER – 3 FLOW OPTION**

- One 1W Nozzle (Part No. 419336) and one 2W Nozzle (Part No. 419337) = three flow numbers
- 135 in. (343 cm) perimeter maximum
- No round duct option available
- Follow design table in Figure 2 to determine maximum module size for each nozzle

<table>
<thead>
<tr>
<th>Side A (in.)</th>
<th>Side B (in.)</th>
<th>1W Module Side B (in.)</th>
<th>2W Module Side B (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum</td>
<td>Maximum</td>
<td>Maximum</td>
<td>Maximum</td>
</tr>
<tr>
<td>in. (cm)</td>
<td>in. (cm)</td>
<td>in. (cm)</td>
<td>in. (cm)</td>
</tr>
<tr>
<td>4 (10)</td>
<td>60.0 (152)</td>
<td>23.0 (58)</td>
<td>23.0 (58)</td>
</tr>
<tr>
<td>5 (13)</td>
<td>60.0 (152)</td>
<td>23.0 (58)</td>
<td>23.0 (58)</td>
</tr>
<tr>
<td>6 (15)</td>
<td>59.5 (151)</td>
<td>22.5 (57)</td>
<td>37.0 (94)</td>
</tr>
<tr>
<td>7 (18)</td>
<td>59.0 (150)</td>
<td>22.0 (56)</td>
<td>37.0 (94)</td>
</tr>
<tr>
<td>8 (20)</td>
<td>58.5 (149)</td>
<td>22.0 (56)</td>
<td>36.5 (93)</td>
</tr>
<tr>
<td>9 (23)</td>
<td>58.0 (147)</td>
<td>21.5 (55)</td>
<td>36.5 (93)</td>
</tr>
<tr>
<td>10 (25)</td>
<td>57.0 (145)</td>
<td>21.0 (53)</td>
<td>36.0 (91)</td>
</tr>
<tr>
<td>11 (28)</td>
<td>56.0 (142)</td>
<td>20.5 (52)</td>
<td>35.5 (90)</td>
</tr>
<tr>
<td>12 (31)</td>
<td>55.5 (141)</td>
<td>20.0 (51)</td>
<td>35.5 (90)</td>
</tr>
<tr>
<td>13 (33)</td>
<td>54.5 (138)</td>
<td>19.5 (50)</td>
<td>35.0 (89)</td>
</tr>
<tr>
<td>14 (36)</td>
<td>53.5 (136)</td>
<td>18.5 (47)</td>
<td>35.0 (89)</td>
</tr>
<tr>
<td>15 (38)</td>
<td>52.0 (132)</td>
<td>18.0 (46)</td>
<td>34.0 (86)</td>
</tr>
<tr>
<td>16 (41)</td>
<td>51.0 (130)</td>
<td>17.0 (43)</td>
<td>34.0 (86)</td>
</tr>
<tr>
<td>17 (43)</td>
<td>49.5 (126)</td>
<td>16.0 (41)</td>
<td>33.5 (85)</td>
</tr>
<tr>
<td>18 (46)</td>
<td>47.5 (121)</td>
<td>14.5 (37)</td>
<td>33.0 (84)</td>
</tr>
<tr>
<td>19 (48)</td>
<td>46.0 (117)</td>
<td>13.5 (34)</td>
<td>32.5 (83)</td>
</tr>
<tr>
<td>20 (51)</td>
<td>43.5 (111)</td>
<td>12.0 (31)</td>
<td>31.7 (81)</td>
</tr>
<tr>
<td>21 (53)</td>
<td>41.0 (104)</td>
<td>10.0 (25)</td>
<td>31.0 (79)</td>
</tr>
<tr>
<td>22 (56)</td>
<td>38.0 (97)</td>
<td>7.5 (19)</td>
<td>30.5 (78)</td>
</tr>
<tr>
<td>23 (58)</td>
<td>33.5 (85)</td>
<td>4.0 (10)</td>
<td>29.5 (75)</td>
</tr>
</tbody>
</table>

**FIGURE 2**

Example: Protection is required for a duct that has an "A" dimension of 8.0 in. (20 cm) wide and a "B" dimension of 55 in. (140 cm) long.

Referring to the table in Figure 2, if the "A" dimension is 8.0 in. (20 cm), the "B" dimension must not exceed 58.5 in. (149 cm). In this example, the "B" dimension is 55 in. (140 cm), therefore, this duct can be protected with a three flow application.

- Read over from the 8.0 in. (20 cm) line on the table to the 1W Module column. At that point, the chart shows that the "B" module length for the 1W nozzle can be 22.0 in. (56 cm). Center the 1W nozzle in that module. The 2W module can now be centered within the remaining module.
Duct Protection – Multiple Nozzle (Continued)

DUCT SIZES GREATER THAN 135 IN. (343 cm) PERIMETER

- Ducts over 135 in. perimeter must be modularized using 2W nozzles (Part No. 419337)
- No round duct option available
- Follow the design chart to determine maximum module size for each 2W nozzle
- When determining number of nozzles required, it is sometimes an advantage to check the chart using the shortest side as Side "A" and then recheck it using the longest side as Side "A". This comparison may reveal a need for a lesser quantity of nozzles one way versus the other way.

When working with Chart 1, the quantity of nozzles determined must be equally divided within the duct area.

When working with Chart 2, one half of the quantity of nozzles determined must be equally positioned in the top half of the area of the duct and the remaining half of the nozzles must be positioned in the bottom half of the duct area.

Example: The duct to be protected has a Side "A" of 40 in. and a Side "B" of 60 in. Referring to the design chart, this duct requires 4 nozzles. One half of 4 = 2. Therefore, 2 nozzles must be equally positioned in each of the two duct areas. See Figure 3.

![Figure 3](image-url)
Transition Protection

Transitions are protected at a point in the transition where the perimeter or the diameter is equal to or less than the maximum size duct that can be protected. The nozzle must be located in the center of the transition opening where the maximum perimeter or diameter begins. See Figure 4.

Electrostatic Precipitator Protection

Some restaurant ventilating ducts have an electrostatic precipitator installed at or near the base. These precipitators are used to aid in the cleaning of exhaust air.

Normally electrostatic precipitators do not require protection but should the “authority having jurisdiction” require protection, use the following guidelines.

Ducts with precipitators located at or near the base can be protected using duct nozzle(s) above the precipitator and 1/2N nozzle(s) (Part No. 419334) for the precipitator. One 1/2N nozzle must be used for each cell being protected. This nozzle tip is stamped with 1/2N, indicating that it is a 1/2-flow nozzle and must be counted as 1/2 flow number.

When protecting ducts equipped with precipitators, the duct nozzle(s) must be installed above the precipitator and aimed to discharge downstream. If the area above the precipitator is a duct, the nozzle(s) must be positioned according to duct protection guidelines. If the area above the precipitator is a transition, the transition guidelines must be followed.

The 1/2N nozzle (Part No. 419334) must be centered 10 to 26 in. (25 to 66 cm) below the precipitator and aimed to discharge at the center of each precipitator cell. However, if it is physically impossible to mount the nozzle at 10 to 26 in. (25 to 66 cm) due to precipitator placement, the nozzle may be mounted closer than 10 in. (25 cm). See Figure 5.

* IF PHYSICALLY IMPOSSIBLE AT 10 TO 26 IN. (25 TO 66 cm), NOZZLE MAY BE MOUNTED CLOSER THAN 10 IN. (25 cm).

Note: For ESP used in Pollution Control units, contact Ansul Technical Services for recommended application.
Plenum Protection

The R-102 system uses the 1W Nozzle (Part No. 419336) or the 1N Nozzle (Part No. 419335) for plenum protection. The 1W nozzle tip is stamped with 1W and the 1N nozzle tip is stamped with 1N, indicating they are one-flow nozzles and must be counted as one flow number each. When protecting a plenum chamber, the entire chamber must be protected regardless of filter length.

VERTICAL PROTECTION – GENERAL

- One 1W nozzle will protect 4 linear feet (1.2 m) of plenum. The maximum distance from the end of the hood to the first and last nozzle must be no more than 2 ft. (.6 m). After the first nozzle, any additional nozzles must be positioned at a maximum of 4 ft. (1.2 m) apart down the entire length of the plenum. The plenum width must not exceed 4 ft. (1.2 m). (The 1W nozzle can be used on single or V-bank filter arrangements.) See Figure 6.

- When protecting plenums with the 1W nozzle, two options of coverage are available:
  - **Option 1:** The 1W nozzle must be on the center line of the single or “V” bank filter and positioned within 1-20 in. (2.5-51 cm) above the top edge of the filter. See Figure 7.
  - **Option 2:** The 1W nozzle must be placed perpendicular, 8-12 in. (20-30 cm) from the face of the filter and angled to the center of the filter. The nozzle tip must be within 2 in. (5 cm) from the perpendicular center line of the filter. See Figure 8.

HORIZONTAL PROTECTION – OPTION 1

1N NOZZLE – PART NO. 419335 – SINGLE BANK PROTECTION

One 1N nozzle will protect 10 linear feet (3.1 m) of single filter bank plenum. The nozzle(s) must be mounted in the plenum, 2 to 4 in. (5 to 10 cm) from the face of the filter, centered between the filter height dimension, and aimed down the length. The nozzle must be positioned 0-6 in. (0-15 cm) from the end of the hood to the tip of the nozzle. See Figure 9.
Plenum Protection (Continued)

HORIZONTAL PROTECTION – OPTION 2

1W NOZZLE – PART NO. 419336 – “V” BANK PROTECTION

One 1W nozzle will protect 6 linear feet (1.8 m) of “V” bank plenum. The nozzle must be mounted horizontally, positioned 1/3 the filter height down from the top of the filter. Nozzles can be located at 6 ft. (1.8 m) spacings on longer plenums. The nozzle must be positioned 0-6 in. (0-15 cm) from the end of the hood to the tip of the nozzle. See Figure 10.

FIGURE 10

1N NOZZLE – PART NO. 419335 – “V” BANK PROTECTION

- Two 1N nozzles will protect 10 linear feet (3.1 m) by 4 ft. (1.2 m) wide of “V” bank plenum. The nozzles must be mounted in the plenum, 2 to 4 in. (5 to 10 cm) from the face of the filter, centered between the filter height dimension, and aimed down the length. The nozzle must be positioned 0-6 in. (0-15 cm) from the end of the hood to the tip of the nozzle. See Figure 11.

FIGURE 11

For a plenum, either single or “V” bank, with a linear extension longer than 10 feet (3.1 m), each bank may be protected using one 1N nozzle every 10 ft. (3.1 m) or less depending on the overall length of the plenum. See Figure 12. The nozzles may point in the opposite directions as long as the entire plenum area is protected, and the 10 ft. (3.1 m) limitation is not exceeded. See Figure 13. The nozzle positioning shown in Figure 14 is not an acceptable method of protection because the plenum area directly under the tee is not within the discharge pattern of either nozzle.
Appliance Protection

The following pages detail types of appliance protection. Each design requires several factors: correct nozzle choice, correct nozzle height above hazard, correct nozzle location and correct aiming point.

Fryer – Single Nozzle Protection

1. Design requirements for fryers are broken down into two types.
   
   **A. FRYEERS WITHOUT DRIPTOARDS**
   
   If the fryer does not include a dripboard, measure the internal depth (horizontal dimension from front to back) and length of the frypot.
   
   **B. FRYEERS WITH DRIPTOARDS**
   
   If the fryer includes any dripboard areas, measure both the internal depth (horizontal dimension from front to back) and length of the frypot portion, and then measure the internal depth and length of the overall hazard area including any dripboard areas.

2. Using Table, “Maximum Cooking Area Dimension – Single Nozzle Fryer Protection,” determine which nozzle is needed to protect the fryer based on the maximum dimensions listed.
   
   **A.** If the fryer does not include a dripboard, use the maximum dimensions listed in the first column of the table to select the correct nozzle.
   
   **B.** If the fryer includes any dripboard areas, use both the maximum frypot dimensions in the first column of the table, and the maximum overall dimensions in the second column of the table to select the correct nozzle. None of the maximum dimensions in either column may be exceeded.

3. If either the maximum frypot or the overall sizes are exceeded, an additional nozzle(s) will be required. Refer to the multiple nozzle requirements.

Example: A fryer with a dripboard. The inside of the frypot without the dripboard measures 18 in. in depth x 18 in. in length (46 cm x 46 cm) and the inside of the overall area including the dripboard measures 18 in. in depth x 24 in. in length (46 cm x 61 cm). From the Table “Maximum Cooking Area Dimension – Single Nozzle Fryer Protection,” either the 3N or the 290 nozzle should be selected to protect the fryer, depending on the maximum nozzle height above the fryer and the positioning requirements allowed. Refer to appropriate Figures.
### Maximum Area Dimensions – Single Nozzle Fryer Protection

<table>
<thead>
<tr>
<th>Max. Size</th>
<th>Type of Nozzle</th>
<th>Nozzle Height Above Top of Fryer</th>
<th>Nozzle Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frypot Only</td>
<td>Full or Split Vat</td>
<td>230 27 in. to 47 in. (69 cm to 119 cm)</td>
<td>See Figure 15 and 16</td>
</tr>
<tr>
<td>Frypot Only</td>
<td>Full or Split Vat</td>
<td>245 20 in. to 27 in. (51 cm to 69 cm)</td>
<td>See Figure 15 and 16</td>
</tr>
<tr>
<td>Frypot Only</td>
<td>Full or Split Vat</td>
<td>290 13 in. to 16 in. (33 cm to 41 cm)</td>
<td>See Figure 17</td>
</tr>
<tr>
<td>Frypot Only</td>
<td>Full or Split Vat</td>
<td>290 16 in. to 27 in. (41 cm to 69 cm)</td>
<td>See Figure 17</td>
</tr>
</tbody>
</table>

**Diagram Notes:**
- Nozzle tip positioned anywhere along or within perimeter of cooking surface and aimed to the center of the cooking area.
- Fryer without dripboard.
- Fryer with dripboard.
- Split vat.

**Figures:**
- **Figure 15**
- **Figure 16**

**Caption:**
- Fryer – Single Nozzle Protection (Continued)
### Maximum Area Dimensions – Single Nozzle Fryer Protection (Continued)

<table>
<thead>
<tr>
<th>Max. Size</th>
<th>Overall Max. Size</th>
<th>Type of Nozzle</th>
<th>Nozzle Height Above Top of Fryer</th>
<th>Nozzle Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frypot Only</td>
<td>19.5 in. x 19 in. (50 cm x 48 cm)</td>
<td>290</td>
<td>13 in. to 16 in. (33 to 41 cm)</td>
<td>See Figure 17</td>
</tr>
<tr>
<td></td>
<td>19.5 in. x 25 3/8 in. (50 cm x 65 cm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fryer with Dripboard</td>
<td>19.5 in. x 25 3/8 in. (50 cm x 65 cm)</td>
<td>3N</td>
<td>See Figure 18</td>
<td>See Figure 18</td>
</tr>
<tr>
<td></td>
<td>18 in. x 27 3/4 in. (46 cm x 70.5 cm)</td>
<td>3N</td>
<td>25 in. to 35 in. (64 cm to 89 cm)</td>
<td>See Figure 19</td>
</tr>
</tbody>
</table>

**NOTE:**

- **3N Nozzle Tip** must be located within the perimeter of the surface area within the front half of the fry pot and aimed at the center.

---

**FIGURE 17**

290 NOZZLE TIP POSITIONED OVER THE MIDPOINT OF THE HAZARD AREA ± 3 IN. (7.6 cm) FROM THE MIDPOINT ALONG THE LONGEST SIDE OF THE HAZARD AND ± 1 IN. (2.5 cm) FROM THE MIDPOINT ALONG THE SHORTEST SIDE OF THE HAZARD AND AIMED AT THE MIDPOINT OF THE COOKING AREA.

**FIGURE 18**

3N NOZZLE TIPPOSITIONED ANYWHERE ALONG OR WITHIN PERIMETER OF COOKING SURFACE AND AIMED TO THE CENTER OF THE COOKING AREA.

**FIGURE 19**

34 IN. (86 cm) MAXIMUM DIAGONAL DISTANCE BETWEEN NOZZLE AND CENTER OF HAZARD AREA.
Fryer – Multiple Nozzle Protection

Design Requirements:
Fryers exceeding the coverage of a single nozzle can be divided into modules. Each module must not exceed the maximum area allowed for a single nozzle. However, when utilizing multiple nozzle protection, the longest side allowed for a fryer with dripboard can be used, regardless of whether the fryer has a dripboard or not.

- The maximum size fryer that can be modularized is 864 sq. in. (5574 sq. cm) or in terms of ft., 6 sq. ft. (.56 sq. m).

1. Design requirements for multiple nozzle fryers are broken down into two types:
   A. FRYERS WITHOUT DRIPBOARD(S)
      If the fryer does not include a dripboard, measure the internal depth (horizontal dimension from front to back) and length of the frypot. Then, multiply the depth and length to obtain the area of the frypot in square inches.
   B. FRYERS WITH DRIPBOARD(S)
      If the fryer includes any dripboard areas, measure both the internal depth and length of the frypot portion, and then measure the internal depth and length of the overall hazard area including any dripboard areas.
      Determine the area of both the frypot and the area of the overall vat by multiplying corresponding depth and length dimensions.

2. Divide the frypot or overall vat into modules, each of which can be protected by a single nozzle, based on the maximum dimension and area coverage of the nozzle as specified in Table, “Maximum Cooking Area Dimension – Multiple Nozzle Protection.”
   A. If the module considered does not include any portion of the dripboard, use only the maximum frypot area and maximum dimension listed in the first column of the table to select the correct nozzle.
   B. If the module considered includes any dripboard areas, use both the maximum frypot area and dimension listed in the first column of the table, and the maximum overall area and dimensions listed in the second column of the table to select the correct nozzle.

3. None of the maximum dimensions in either column may be exceeded. If either the maximum frypot or the overall sizes are exceeded, the area divided into modules will need to be redefined with the possibility of an additional nozzle.

Options For Modularizing Fryers
The following Figure 20 shows approved methods of dividing (modularizing) fryers so that each section can be properly protected.

Example: A fryer with a dripboard. The inside vat without the dripboard measures 18 in. in depth x 30 in. in length (46 cm. x 76 cm) and the inside of the overall vat including the dripboard measures 24 in. in depth x 30 in. in length (61 cm x 76 cm). Because the fryer is 30 in. (76 cm) in length, it exceeds the coverage of a single nozzle.

Dividing the length in half, each module now has an overall vat dimension of 24 in. in depth x 15 in. in length (61 x 38 cm). From the Table, “Maximum Cooking Area Dimension – Multiple Nozzle Fryer Protection,” either the 3N or the 290 nozzle should be selected to protect each fryer module, depending on the maximum nozzle height above the fryer and the positioning requirements allowed. Refer to appropriate Figures, 15 through 19.

See additional examples in Appendix Section.
### Fryer – Multiple Nozzle Protection (Continued)

#### Maximum Area Dimension – Multiple Nozzle Fryer Protection

<table>
<thead>
<tr>
<th>Max. Size Module Frypot Only</th>
<th>Max. Size Module Overall With Dripboard</th>
<th>Type of Nozzle</th>
<th>Nozzle Height Above Top of Fryer</th>
<th>Nozzle Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full or Split Vat 21 in. x 210 in.(^2) (53 cm x .14 m(^2))</td>
<td>Full or Split Vat 21 in. x 294 in.(^2) (53 cm x .19 m(^2))</td>
<td>230</td>
<td>27 in. to 47 in. (69 cm to 119 cm)</td>
<td>See Figure 21</td>
</tr>
<tr>
<td>Full or Split Vat 21 in. x 210 in.(^2) (53 cm x .14 m(^2))</td>
<td>Full or Split Vat 21 in. x 294 in.(^2) (53 cm x .19 m(^2))</td>
<td>245</td>
<td>20 in. to 27 in. (51 to 69 cm)</td>
<td>See Figure 21</td>
</tr>
<tr>
<td>Full or Split Vat 21 in. x 210 in.(^2) (53 cm x .14 m(^2))</td>
<td>Full or Split Vat 21 in. x 294 in.(^2) (53 cm x .19 m(^2))</td>
<td>290</td>
<td>13 in. to 16 in. (33 to 41 cm)</td>
<td>See Figure 22</td>
</tr>
<tr>
<td>25 3/8 x 370.5 in(^2) (65 cm x .24 m(^2))</td>
<td>25 3/8 x 495 in(^2) (65 cm x .32 m(^2))</td>
<td>290</td>
<td>13 in. to 16 in. (33 to 41 cm)</td>
<td>See Figure 22</td>
</tr>
<tr>
<td>Full or Split Vat 26 1/2 in. x 203 in.(^2) (67 cm x .13 m(^2))</td>
<td>Full or Split Vat 26 1/2 in. x 384 1/4 in.(^2) (67 cm x .25 m(^2))</td>
<td>290</td>
<td>16 in. to 27 in. (41 to 69 cm)</td>
<td>See Figure 22</td>
</tr>
<tr>
<td>25 3/8 x 370.5 in(^2) (65 cm x .24 m(^2))</td>
<td>25 3/8 x 495 in(^2) (65 cm x .32 m(^2))</td>
<td>3N</td>
<td>See Figure 23</td>
<td>See Figure 23</td>
</tr>
<tr>
<td>27 3/4 x 324 in.(^2) (70.5 cm x .21 m(^2))</td>
<td>27 3/4 x 497 in(^2) (70.5 cm x .32 m(^2))</td>
<td>3N</td>
<td>25 in. to 35 in. (64 cm to 89 cm)</td>
<td>See Figure 24</td>
</tr>
</tbody>
</table>

---

**FIGURE 21**

Fryer Without Dripboard

Position nozzle tip anywhere along or within the perimeter of the module it is protecting and aim at the midpoint of that modular area.

Fryer With Dripboard

290 nozzle tip positioned over the midpoint of the respective modular area ± 3 in. (7.6 cm) from the midpoint along the longest side of the module and ± 1 in. (2.5 cm) from the midpoint along the shortest side of the module and aimed at the midpoint of the module.

**FIGURE 22**

Fryer Without Dripboard

3N nozzle tip must be positioned anywhere along or within the perimeter of the modular it is protecting and aimed at the midpoint of that respective module area.

Fryer With Dripboard

The 3N nozzle tip must be positioned anywhere along or within the perimeter and forward of the right-to-left centerline of the cooking area. The aiming point of the nozzle must be at the diagonal center of the modular cooking area.

**FIGURE 23**

**FIGURE 24**

34 in. (86 cm) maximum diagonal distance between nozzle and center of hazard area.
Multiple Nozzle Fryer Protection – Tilt Skillet / Braising Pan

Protection for tilt skillets or braising pans is to be based upon the coverage limitations provided for deep fat fryer protection. Refer to Section IV, DESIGN, starting on Page 4-10, for maximum fryer nozzle coverages and maximum fryer nozzle height limitations.

Although the maximum 6 sq. ft. total surface cooking area requirement applies to fryer protection, it does not apply to tilt skillets or braising pans.

Each tilt skillet/braising pan protected module must not exceed the fryer limitations for “MAXIMUM SIZE MODULE OVERALL WITH DRIPBOARD” coverage per nozzle as described in Table on Page 4-11.

Tilt skillets and braising pans generally utilize a hinged cover. Fryer protection nozzles are to be placed toward the front of the appliance to minimize the potential for the tilt skillet or braising pan cover to interfere with the nozzle discharge. See Figure 25.

Cover must not interfere with nozzle discharge. The nozzle is to be placed toward the front of the appliance to minimize the potential for the skillet or braising pan cover to interfere with the nozzle discharge.

Cover must not interfere with edge of discharge pattern. Fryer nozzle used for tilt skillet or braising pan protection must be positioned near the front edge of the pan and aimed at the front to back centerline of the pan. The discharge from the nozzle(s) must completely clear the pan cover with an unobstructed view to the back of the pan.
Range Protection 1-Flow Nozzle

The R-102 system uses five different nozzles for the protection of ranges. Two of the design options require a one-flow nozzle and three of the design options require two-flow nozzles.

NOTICE

A 13 in. (33 cm) diameter wok pan is the largest wok size that can be protected on ranges. When protecting hot top ranges, the entire cooking surface must be protected.

Range Protection (1-Flow Nozzle)

> Single and multiple burner ranges can be protected using a 1N nozzle, Part No. 419335. The nozzle tip is stamped with IN, indicating that this is a one-flow nozzle and must be counted as one flow number.

When using this nozzle for range protection, the maximum length of the burner grates being protected with a single nozzle must not exceed 32 in. (81 cm) and the maximum area of the burner grates must not exceed 384 sq. in. (2477 sq. cm) per nozzle.

When protecting a range, the 1N nozzle must be located a maximum of 10 in. (25.4 cm) from each burner grate centerline and must be aimed at the center of the cooking surface. See Figure 26.

When this type of hazard is equipped with a back shelf located above the range top, two protection options are available: One requires a 1F nozzle, Part No. 419333, and the other option requires a 260 nozzle, Part No. 419341.

**Option 1: 1F Nozzle**

When using the 1F nozzle for range protection with or without back shelf, the maximum length of the burner grates being protected must not exceed 28 in. (71 cm) and the maximum area of the burner grates must not exceed 336 sq. in. (2168 sq. cm). See Figure 27 for nozzle location details.

**Option 2: 260 Nozzle**

When using the 260 nozzle for range protection with or without back shelf, the maximum length of the burner grates being protected must not exceed 32 in. (81 cm) and the maximum area of the burner grates must not exceed 384 sq. in. (2477 sq. cm). Nozzle must be located on the front edge of the burner grates and aimed at a point 10 in. (25 cm) from the back edge of the burner grates. Nozzle must be mounted 30 to 40 in. (76 to 102 cm) above the hazard surface. See Figure 28.
Range Protection 2-Flow Nozzle

High Proximity Application (2-Flow Nozzle): 40 in. to 50 in. (102 cm to 127 cm) above the cooking surface.

This high proximity application uses the 245 nozzle, Part No. 419340.

The nozzle tip is stamped with 245 indicating this is a two-flow nozzle and must be counted as two flow numbers.

One 245 nozzle will protect a maximum cooking area of 672 sq. in. (4335 sq. cm) with a maximum longest dimension of 28 in. (71 cm).

When using this nozzle for range protection, the nozzle must be pointed vertically down and positioned as shown in Figures 29 and 30.

NOTICE

Four burner grates shown in Figure 30. For single or double burner grates, locate nozzle at center of cooking surface or 11 3/8 in. (29 cm) maximum from nozzle centerline to center of any burner grate.
Range Protection 2-Flow Nozzle

Medium Proximity Application (2-Flow Nozzle): 30 in. to 40 in. (76 cm to 102 cm) above the cooking surface.

The medium proximity application uses the 260 nozzle, Part No. 419341.

The nozzle tip is stamped with 260 indicating this is a two-flow nozzle and must be counted as two flow numbers.

- One 260 nozzle will protect a cooking area of 768 sq. in. (4955 sq. cm) with a maximum dimension of 32 in. (81 cm).

When using this nozzle for range protection, the nozzle must be pointed vertically down and positioned as shown in Figures 31 and 32.

Four burner grates shown in Figure 32. For single or double burner grates, locate nozzle at center of cooking surface.
Range Protection 2-Flow Nozzle

Low Proximity Application Two (2-Flow Nozzles): 15 in. to 20 in. (38 cm to 51 cm) above the cooking surface.

The low proximity application requires two (2) 290 nozzles, Part No. 419342.

The nozzle tip is stamped with 290 indicating this is a two flow nozzle and must be counted as two flow numbers.

Two (2) 290 nozzles will protect a cooking area of 1008 sq. in. (6503 sq. cm) with a maximum dimension of 36 in. (91 cm).

When using two of these nozzles for low proximity range protection, the nozzles must be positioned along the cooking surface perimeter to 1.5 in. (3.8 cm) inside the perimeter, and aimed at a 45° angle along the longitudinal centerline of the range. See Figures 33 and 34.

![FIGURE 33](image1.png)

![FIGURE 34](image2.png)
Griddle Protection 1-Flow Nozzle

The R-102 system uses four different nozzles for the protection of griddles. One of the applications requires a 1-flow nozzle and three of the applications require a 2-flow nozzle.

High Proximity Application: 35 in. to 40 in. (89 to 102 cm) above the cooking surface.

This high proximity application uses the 1N nozzle, Part No. 419335.

The nozzle tip is stamped with 1N indicating this is a one-flow nozzle and must be counted as one flow number.

One 1N nozzle will protect a maximum cooking area of 1080 sq. in. (6968 sq. cm) with the maximum longest side of 36 in. (91 cm).

When using this nozzle for griddle protection, the nozzle must be positioned along the cooking surface perimeter to a maximum of 2 in. (5 cm) inside the perimeter, and aimed to the midpoint of the cooking surface. See Figure 35 and 36.

NOTICE

When using this type of griddle protection, only 5 flow numbers are allowed on a 1.5 gallon system and only 11 flow numbers are allowed on a 3 gallon system.
Griddle Protection 2-Flow Nozzle
Option 1 – Nozzle Center Located

High Proximity Application: 30 in. to 50 in. (76 cm to 127 cm) above the cooking surface.

This high proximity application uses the 290 nozzle, Part No. 419342.

The nozzle tip is stamped with 290 indicating this is a 2-flow nozzle and must be counted as two flow numbers.

One 290 nozzle will protect a maximum cooking area of 720 sq. in. (4645 sq. cm) with a maximum dimension of 30 in. (76 cm).

When using this nozzle for high proximity applications, the nozzle must be positioned within 1 in. (2.5 cm) of the center of the cooking surface and pointed vertically down. See Figure 38 and 37.
2-Flow Griddle Protection (Continued)

Option 2 – Nozzle Perimeter Located

High Proximity Application: 30 in. to 50 in. (76 cm to 127 cm) above the cooking surface.

This high proximity application uses the 260 nozzle, Part No. 419341.

The nozzle tip is stamped with 260 indicating this is a two-flow nozzle and must be counted as two flow numbers.

One 260 nozzle will protect a maximum cooking area of 1440 sq. in. (9290 sq. cm) with a maximum dimension of 48 in. (122 cm).

When using this nozzle for griddle protection, the nozzle must be positioned along the cooking surface perimeter to 2 in. (5.1 cm) inside perimeter, and aimed at the center of the cooking surface. See Figure 39 and 40.
2-Flow Griddle Protection (Continued)

Option 2 – Nozzle Perimeter Located (Continued)

Medium Proximity Application: 20 in. to 30 in. (51 cm to 76 cm) above the cooking surface.

The medium proximity application uses the 290 nozzle, Part No. 419342.

The nozzle tip is stamped with 290 indicating this is a two-flow nozzle and must be counted as two flow numbers.

One 290 nozzle will protect a maximum cooking area of 1440 sq. in. (9290 sq. cm) with a maximum dimension of 48 in. (122 cm).

When using this nozzle for griddle protection, the nozzle must be positioned along the perimeter to 2 in. (5.1 cm) inside perimeter, and aimed at the center of the cooking surface. See Figure 41 and 42.
2-Flow Griddle Protection (Continued)

Option 2 – Nozzle Perimeter Located (Continued)

Low Proximity Application: 10 in. to 20 in. (25 cm to 51 cm) above the cooking surface.

The low proximity application uses the 2120 nozzle, Part No. 419343.

The nozzle tip is stamped with 2120 indicating this is a two-flow nozzle and must be counted as two flow numbers.

One 2120 nozzle will protect a maximum cooking area of 1440 sq. in. (9290 sq. cm) with a maximum dimension of 48 in. (122 cm).

When using this nozzle for griddle protection, the nozzle must be positioned along the perimeter to 2 in. (5.1 cm) inside perimeter, and aimed at the center of the cooking surface. See Figure 43 and 44.
Chain Broiler Protection

The R-102 system uses two 1N Nozzles (Part No. 419335) for chain broiler protection. The nozzle tip is stamped 1N, indicating that this is a one-flow nozzle and must be counted as one flow number (total of two flow numbers for each chain broiler being protected).

Two 1N nozzles are always needed for chain broiler protection when the hazard area to be protected does not meet the “Overhead Broiler Protection” requirements. The maximum internal size of the broiler is 43 x 31 in. (109 cm x 79 cm). The nozzles must be positioned at each end of the enclosed cooking chamber 1 to 3 in. (2.5 to 7.5 cm) above the surface of the chain and a maximum distance of 4 in. (10 cm) away from the broiler opening. The nozzles may be mounted at either corner as long as they are at opposite ends of the chain broiler and positioned to discharge diagonally across the top of the chain. See Figures 45 and 46.

Overhead Chain Broiler Protection

The R-102 system uses two 1W Nozzles (Part No. 419336) for overhead chain broiler protection. The nozzle tip is stamped with 1W, indicating that this is a one-flow nozzle and must be counted as one flow number.

Overhead protection is only available for chain broilers with exhaust opening dimensions that are not less than 60% of the internal broiler length and not less than 60% of the internal broiler width, to a minimum size of 12 in. x 12 in. (30.5 x 30.5 cm). Internal broiler size can not be larger than 32 in. x 34 in. (81 x 86 cm).

When overhead protection is used, the nozzles must be centered above the exhaust opening within 4 to 8 in. (10 to 20 cm) of each other and they must be located 10 to 26 in. (25 to 66 cm) above the top of the broiler surface. See Figure 47.

The nozzles may vary in position as long as they are evenly spaced from the exhaust center and are always 180° opposite of each other. If the opening is not square, the nozzles must be positioned along the centerline, parallel to the longest side of the opening. See Figure 48.

Note: The CB Metal Blow-off Cap must be used when using chain broiler protection.
Overhead Chain Broiler Protection (Continued)

Example No. 1 – Internal broiler size is 24 in. long x 20 in. wide (61 x 51 cm), with an opening of 16 in. x 16 in. (40.6 x 40.6 cm).

To determine minimum opening size, multiply the internal length and the internal width by 0.6:
Length of opening – 24 in. x 0.6 = 14.4 in. (61 cm x 0.6 = 36.6 cm)
Width of opening – 20 in. x 0.6 = 12.0 in. (51 cm x 0.6 = 30.5 cm)
The minimum allowable opening for overhead protection would be 14.4 in. x 12.0 in. (36.6 x 30.5 cm). This example would be acceptable for overhead protection.

Example No. 2 – Internal broiler size is 30 in. long x 24 in. wide (76 x 61 cm) with an opening of 22 in. x 12 in. (56 x 30 cm).

To determine minimum opening size, multiply internal length and internal width by 0.6:
Length of opening – 30 in. x 0.6 = 18.0 in. (76 cm x 0.6 = 45.7 cm)
Width of opening – 24 in. x 0.6 = 14.4 in. (61 cm x 0.6 = 36.6 cm)
Minimum allowable opening for overhead protection would be 18 in. x 14.4 in. (45.7 x 36.6 cm).

Because this broiler has an opening of 22 in. x 12 in., the 12 in. width is below the minimum allowable calculated dimension of 14.4 in. (36.6 cm) and therefore would not be acceptable for overhead protection.

Upright/Salamander Broiler Protection

The R-102 Restaurant Fire Suppression System uses one 1N Nozzle, Part No. 419335, for upright/salamander broiler protection. The nozzle tip is stamped 1N, indicating that this is a one-flow nozzle.

One 1N nozzle will protect a maximum hazard area (internal broiler chamber) of 16 in. (41 cm) deep x 29 in. (74 cm) wide.

The single 1N nozzle must be located directly in line with either vertical edge of the broiler opening, 6 in. (15 cm) to 12 in. (30 cm) in front of the broiler, and 0 in. to 12 in. (30 cm) above the top of the broiler. The nozzle must be aimed at the center of the broiler opening. See Figure 49.

Upright/Salamander Broiler Protection

The R-102 system uses two 1/2N Nozzles (Part No. 419334) for all upright/salamander broiler protection. The nozzle tip is stamped 1/2N, indicating that this is a half-flow nozzle. A pair of these nozzles will equal one flow number.

Two 1/2N nozzles will protect a maximum hazard area (internal broiler chamber) of 30 in. x 32.5 in. (76 cm x 82.5 cm). These nozzles must always be used in pairs on an upright/salamander broiler. One nozzle must be positioned above the grate and pointed at the back opposite corner of the broiler chamber. The second nozzle must be pointed down into the center of the drip pan through the open slot. See Figure 50.

Note: If metal blow-off caps are required for upright broiler or salamander broiler protection, use (2) two IN nozzles, Part No. 419335, instead of 1/2N nozzles.

Drip Pan
Gas-Radiant/Electric Char-Broiler Protection

The R-102 system uses the 1N nozzle, (Part No. 419335) for gas-radiant/electric char-broiler protection.

The nozzle tip on the 1N nozzle is stamped with a 1N, indicating that this is a one-flow nozzle and must be counted as one flow number.

One IN nozzle will protect a hazard with a maximum length of 36 in. (91 cm) and a total cooking area which does not exceed 864 sq. in. (5574 sq. cm). The nozzle tip must be located 15 to 40 in. (38 to 102 cm) above the hazard surface. When using this nozzle for gas-radiant/electric char-broiler protection, the nozzle must be positioned anywhere along or within the perimeter of the maximum cooking area and shall be aimed at the center of the cooking surface. See Figure 51.
Lava Rock (Ceramic) Char-Broiler Protection

The R-102 system uses the 1N Nozzle (Part No. 419335) for all lava rock char-broiler protection. The nozzle tip is stamped with 1N, indicating that this is a one-flow nozzle and must be counted as one flow number.

One 1N nozzle will protect a hazard which has a maximum length of 24 in. (61 cm) and a total cooking area which does not exceed 312 sq. in. (2013 sq. cm). The nozzle tip must be located 18 to 35 in. (46 to 89 cm) above the hazard surface. When using this nozzle for lava rock (ceramic) char-broiler protection, the nozzle must be positioned anywhere along or within the perimeter of the maximum cooking area and angled to the center. See Figure 52.

Natural Charcoal Broiler Protection

The R-102 system uses the 1N Nozzle (Part No. 419335) for all natural charcoal broiler protection. The nozzle tip is stamped with 1N indicating that this is a one-flow nozzle and must be counted as one flow number.

One 1N nozzle will protect a hazard area which has a maximum length of 24 in. (61 cm) and a total cooking area which does not exceed 288 sq. in. (1858 sq. cm). The nozzle tip must be located 18 to 40 in. (46 to 102 cm) above the hazard surface. When using this nozzle for natural charcoal broiler protection, the nozzle must be positioned anywhere along or within the perimeter of the maximum cooking area and aimed at the center of the cooking surface. See Figure 53.

The coverage of such appliances only applies when the depth of the charcoal does not exceed 4 in. (10 cm).
Alternate Ceramic/Natural Charcoal Char-broiler Protection

The R-102 system may also use the 3N nozzle (Part No. 419338) for all ceramic (lava rock) and natural charcoal char-broiler protection. The nozzle tip is stamped with 3N, indicating that this is a three-flow nozzle and must be counted as three flow numbers.

One 3N nozzle will protect a hazard which has a maximum length of 30 in. (76 cm) and a total cooking area which does not exceed 720 sq. in. (4645 sq. cm). The nozzle tip must be located 14 to 40 in. (36 to 102 cm) above the hazard surface. The nozzle must be positioned anywhere along or within the perimeter of the maximum cooking area and angled to the center. See Figure 54.

For natural charcoal char-broiler protection, this coverage only applies when the depth of the charcoal does not exceed 4 in. (10 cm).

Wood Fueled Char-Broiler Protection

The R-102 system uses the 3N Nozzle (Part No. 419338) for mesquite char-broiler protection. The nozzle tip is stamped with 3N indicating that this is a three-flow nozzle and must be counted as three flow numbers.

One 3N nozzle will protect a hazard which has a maximum length of 30 in. (76 cm) and a total cooking area which does not exceed 720 sq. in. (4645 sq. cm). The nozzle tip must be located 14 to 40 in. (36 to 102 cm) above the hazard surface. The nozzle must be positioned anywhere along or within the perimeter of the maximum cooking area and aimed at the center of the cooking surface. See Figure 55.

Mesquite logs and pieces, no larger than 4 in. (10 cm) in diameter, may be protected with a maximum allowable wood depth of 6 in. (15 cm).
Wok Protection

The R-102 system uses two different nozzles for the protection of woks.

1. A 260 nozzle, Part No. 419341, will protect a wok 14 in. (36 cm) minimum diameter up to 30 in. (76 cm) maximum diameter. The wok depth must be no less than 3.75 in. (9.5 cm) and no greater than 8 in. (20 cm).

   The nozzle tip is stamped with 260 indicating that this is a two-flow nozzle and must be counted as two flow numbers.

   When using this nozzle, the nozzle must be positioned as shown in Figure 56.

   ![Figure 56](image-url)

   - **260 Nozzle**
   - Minimum depth 3.75 in. (9.5 cm)
   - Maximum depth 8 in. (20 cm)
   - Minimum diameter 14 in. (35.6 cm)
   - Maximum diameter 30 in. (76.2 cm)

2. A 1N Nozzle, Part No. 419335, will protect a wok 11 in. (28 cm) minimum diameter up to 24 in. (61 cm) maximum diameter. The wok depth must be no less than 3 in. (8 cm) and no greater than 6 in. (15 cm). The nozzle tip is stamped with 1N indicating that this is a one-flow nozzle and must be counted as one flow number. When using this nozzle, the nozzle must be positioned anywhere along or within the perimeter of the wok, aimed at the center, 30 in. to 40 in. (76 to 102 cm) above the hazard surface, as shown in Figure 57.

   ![Figure 57](image-url)

   - **1N Nozzle**
   - Minimum depth 3.0 in. (7.6 cm)
   - Maximum depth 6.0 in. (15 cm)
   - Minimum diameter 11 in. (28 cm)
   - Maximum diameter 24 in. (61 cm)

**NOTICE**

When using this type of wok protection, only 5 flow numbers are allowed on a 1 1/2 gallon system, and only 11 flow numbers are allowed on a 3 gallon system.
Nozzle Application Chart

The following chart has been developed to assist in calculating the quantity and type of nozzle required to protect each duct, plenum, or appliance.

**NOTICE**

This chart is for general reference only. See complete details for each type of hazard.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Duct or Transition (Single Nozzle)</td>
<td>Length – Unlimited Perimeter – 50 in. (127 cm) Diameter – 16 in. (40.6 cm)</td>
<td>1</td>
<td>–</td>
<td>430912</td>
<td>1W</td>
</tr>
<tr>
<td>Duct or Transition (Single Nozzle)</td>
<td>Length – Unlimited Perimeter – 100 in. (254 cm) Diameter – 31 7/8 in. (81 cm)</td>
<td>1</td>
<td>–</td>
<td>419337</td>
<td>2W</td>
</tr>
<tr>
<td>Duct or Transition (Dual Nozzle)</td>
<td>Length – Unlimited Perimeter – 150 in. (381 cm) Diameter – 48 in. (122 cm)</td>
<td>2</td>
<td>–</td>
<td>419337</td>
<td>2W</td>
</tr>
<tr>
<td>Electrostatic Precipitator (At Base of Duct)</td>
<td>Individual Cell</td>
<td>1</td>
<td>–</td>
<td>419334</td>
<td>1/2N</td>
</tr>
<tr>
<td>Plenum (Horizontal Protection)</td>
<td>Length – 10 ft. (3.1 m)</td>
<td>1</td>
<td>–</td>
<td>419335</td>
<td>1N</td>
</tr>
<tr>
<td>Plenum (Horizontal Protection)</td>
<td>Length – 6 ft. (1.8 m) Width – 4 ft. (1.2 m)</td>
<td>1</td>
<td>–</td>
<td>430192</td>
<td>1W</td>
</tr>
<tr>
<td>Plenum (Vertical Protection)</td>
<td>Length – 4 ft. (1.2 m) Width – 4 ft. (1.2 m)</td>
<td>1</td>
<td>–</td>
<td>419336</td>
<td>1W</td>
</tr>
<tr>
<td>Fryer (Split or Non-Split Vat)</td>
<td>Maximum Size (without drip board) 14 in. (36 cm) x 15 in. (38 cm) 13 – 16 in. (33 – 41 cm) Low Proximity</td>
<td>1</td>
<td>13 – 16 in. (33 – 41 cm)</td>
<td>419342</td>
<td>290</td>
</tr>
<tr>
<td>Fryer (Split or Non-Split Vat)</td>
<td>Maximum Size (without drip board) 14 1/2 in. (37 cm) x 14 in. (36 cm) 16 – 27 in. (41 – 69 cm) Medium Proximity</td>
<td>1</td>
<td>16 – 27 in. (41 – 69 cm)</td>
<td>419342</td>
<td>290</td>
</tr>
<tr>
<td>Fryer (Split or Non-Split Vat)*</td>
<td>Maximum Size (without drip board) 15 in. (38 cm) x 14 in. (36 cm) 27 – 47 in. (68 – 119 cm) High Proximity</td>
<td>1</td>
<td>27 – 47 in. (68 – 119 cm)</td>
<td>419339</td>
<td>230</td>
</tr>
<tr>
<td>Fryer (Non-Split Vat Only)</td>
<td>Maximum Size (without drip board) 19 1/2 in. (49.5 cm) x 19 in. (48.2 cm) 21 – 34 in. (53 – 86 cm) High Proximity</td>
<td>1</td>
<td>21 – 34 in. (53 – 86 cm)</td>
<td>419338</td>
<td>3N</td>
</tr>
<tr>
<td>Fryer (Non-Split Vat Only)</td>
<td>Maximum Size (without drip board) 18 in. (45.7 cm) x 18 in. (45.7 cm) 25 – 35 in. (64 – 89 cm) High Proximity</td>
<td>1</td>
<td>25 – 35 in. (64 – 89 cm)</td>
<td>419338</td>
<td>3N</td>
</tr>
</tbody>
</table>

* For multiple nozzle protection of single fryers, see detailed information on Pages 4-12 through 4-14.
### Nozzle Application Chart (Continued)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fryer (Non-Split Vat Only)*</td>
<td>21 in. (53 cm) x 14 in. (36 cm)</td>
<td>25 3/8 in. (64.4 cm) x 19 1/2 in. (49.5 cm)</td>
<td>High Proximity 1</td>
<td>27 – 47 in.</td>
<td>419339</td>
</tr>
<tr>
<td></td>
<td>(Fry Pot must not exceed 15 in. x 14 in. (38 cm x 36 cm))</td>
<td></td>
<td>Medium Proximity 1</td>
<td>20 – 27 in.</td>
<td>419340</td>
</tr>
<tr>
<td></td>
<td>Fryer (Non-Split Vat) (with drip board)</td>
<td>Fryer (Split or Non-Split Vat) (with drip board)</td>
<td>Maximum Size 1</td>
<td>21 – 34 in.</td>
<td>419338</td>
</tr>
<tr>
<td></td>
<td>Fryer (Split or Non-Split Vat) (with drip board)</td>
<td>Fryer (Split or Non-Split Vat) (with drip board)</td>
<td>Fried Pot side must not exceed 19 1/2 in. (49.5 cm) x 19 in. (48.2 cm)</td>
<td>High Proximity 1</td>
<td>13 – 16 in.</td>
</tr>
<tr>
<td></td>
<td>Fryer (Split or Non-Split Vat) (with drip board)</td>
<td>Fryer (Split or Non-Split Vat) (with drip board)</td>
<td>Maximum Size 1</td>
<td>25 – 35 in. (64-89 cm)</td>
<td>419338</td>
</tr>
<tr>
<td></td>
<td>Fryer (Split or Non-Split Vat) (with drip board)</td>
<td>Fryer (Split or Non-Split Vat) (with drip board)</td>
<td>14 in. (36 cm) x 21 in. (53 cm)</td>
<td>Low Proximity 1</td>
<td>13 – 16 in. (33 – 41 cm)</td>
</tr>
<tr>
<td></td>
<td>Fryer (Split or Non-Split Vat) (with drip board)</td>
<td>Fryer (Split or Non-Split Vat) (with drip board)</td>
<td>14 1/2 in. (37 cm) x 26 1/2 in. (67 cm)</td>
<td>Medium Proximity 1</td>
<td>16 – 27 in. (41 – 69 cm)</td>
</tr>
<tr>
<td></td>
<td>Fryer (Split or Non-Split Vat) (with drip board)</td>
<td>Fryer (Split or Non-Split Vat) (with drip board)</td>
<td>Range Longest Side 1</td>
<td>30 – 40 in. (76 – 102 cm)</td>
<td>419335</td>
</tr>
<tr>
<td></td>
<td>Fryer (Split or Non-Split Vat) (with drip board)</td>
<td>Fryer (Split or Non-Split Vat) (with drip board)</td>
<td>32 in. (81 cm) Area – 384 sq. in. (2477 sq. cm)</td>
<td>Longest Side 2</td>
<td>40 – 48 in. (102 – 122 cm) (With Backshelf)</td>
</tr>
<tr>
<td></td>
<td>Fryer (Split or Non-Split Vat) (with drip board)</td>
<td>Fryer (Split or Non-Split Vat) (with drip board)</td>
<td>28 in. (71 cm) Area – 336 sq. in. (2168 sq. cm)</td>
<td>Longest Side 2</td>
<td>40 – 50 in. (102 – 127 cm)</td>
</tr>
<tr>
<td></td>
<td>Fryer (Split or Non-Split Vat) (with drip board)</td>
<td>Fryer (Split or Non-Split Vat) (with drip board)</td>
<td>28 in. (71 cm) Area – 672 sq. in. (4335 sq. cm)</td>
<td>Longest Side 2</td>
<td>30 – 40 in. (76 – 102 cm) (6503 sq. cm)</td>
</tr>
<tr>
<td></td>
<td>Fryer (Split or Non-Split Vat) (with drip board)</td>
<td>Fryer (Split or Non-Split Vat) (with drip board)</td>
<td>36 in. (91 cm) Area – 1008 sq. in. (6503 sq. cm)</td>
<td>Longest Side 2</td>
<td>15 – 20 in. (38 – 51 cm)</td>
</tr>
</tbody>
</table>

* For multiple nozzle protection of single fryers, see detailed information on Pages 4-7 through 4-11.
### Nozzle Application Chart (Continued)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Griddle</td>
<td>Longest Side (High Proximity) 48 in. (122 cm) Area – 1440 sq. in. (9290 sq. cm)</td>
<td>30 – 50 in. (76 – 127 cm) (perimeter located)</td>
<td>1</td>
<td>419341</td>
<td>260</td>
</tr>
<tr>
<td>Griddle</td>
<td>Longest Side (High Proximity) 30 in. (76 cm) Area – 720 sq. in. (4645 sq. cm)</td>
<td>30 – 50 in. (76 – 127 cm) (center located)</td>
<td>1</td>
<td>419342</td>
<td>290</td>
</tr>
<tr>
<td>Griddle</td>
<td>Longest Side (High Proximity) 36 in. (91 cm) Area – 1080 sq. in. (6968 sq. cm)</td>
<td>35 – 40 in. (89 – 102 cm) (perimeter located)</td>
<td>1</td>
<td>419335/417332</td>
<td>1N/1NSS</td>
</tr>
<tr>
<td>Griddle</td>
<td>Longest Side (Medium Proximity) 48 in. (122 cm) Area – 1440 sq. in. (9290 sq. cm)</td>
<td>20 – 30 in. (51 – 76 cm) (perimeter located)</td>
<td>1</td>
<td>419342</td>
<td>290</td>
</tr>
<tr>
<td>Griddle</td>
<td>Longest Side (Low Proximity) 48 in. (122 cm) Area – 1440 sq. in. (9290 sq. cm)</td>
<td>10 – 20 in. (25 – 51 cm) (perimeter located)</td>
<td>1</td>
<td>419343</td>
<td>2120</td>
</tr>
<tr>
<td>Chain Broiler* (Overhead Protection)</td>
<td>Longest Side – 34 in. (86 cm) Area – 1088 sq. in. (7019 sq. cm)</td>
<td>10 – 26 in. (25 – 66 cm) (perimeter located)</td>
<td>2</td>
<td>419336/417333</td>
<td>1W/1WSS</td>
</tr>
<tr>
<td>Chain Broiler (Horizontal Protection)</td>
<td>Length – 43 in. (109 cm) Width – 31 in. (79 cm)</td>
<td>1 – 3 in. (3 – 8 cm)</td>
<td>2</td>
<td>419335/417332</td>
<td>1N/1NSS</td>
</tr>
<tr>
<td>Gas-Radiant Char-Broiler</td>
<td>Longest Side – 36 in. (91 cm) Area – 864 sq. in. (5574 sq. cm)</td>
<td>15 – 40 in. (38 – 102 cm) (perimeter located)</td>
<td>1</td>
<td>419335/417332</td>
<td>1N/1NSS</td>
</tr>
<tr>
<td>Electric Char-Broiler</td>
<td>Longest Side – 34 in. (86 cm) Area – 680 sq. in. (4388 sq. cm)</td>
<td>20 – 50 in. (51 – 127 cm) (perimeter located)</td>
<td>1</td>
<td>419335/417332</td>
<td>1N/1NSS</td>
</tr>
<tr>
<td>Lava-Rock Broiler</td>
<td>Longest Side – 24 in. (61 cm) Area – 312 sq. in. (2013 sq. cm)</td>
<td>18 – 35 in. (46 – 89 cm) (perimeter located)</td>
<td>1</td>
<td>419335/417332</td>
<td>1N/1NSS</td>
</tr>
<tr>
<td>Natural Charcoal Broiler</td>
<td>Longest Side – 24 in. (61 cm) Area – 288 sq. in. (1858 sq. cm)</td>
<td>18 – 40 in. (46 – 102 cm) (perimeter located)</td>
<td>1</td>
<td>419335/417332</td>
<td>1N/1NSS</td>
</tr>
<tr>
<td>Lava-Rock or Natural Charcoal Char-Broiler</td>
<td>Longest Side – 30 in. (76 cm) Area – 720 sq. in. (4645 sq. cm)</td>
<td>14 – 40 in. (36 – 102 cm) (perimeter located)</td>
<td>1</td>
<td>419338</td>
<td>3N</td>
</tr>
</tbody>
</table>

* Minimum chain broiler exhaust opening – 12 in. x 12 in. (31 cm x 31 cm), and not less than 60% of internal broiler size.
### Nozzle Application Chart (Continued)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wood Fueled Char-Broiler</td>
<td>Longest Side – 30 in. (76 cm) Area – 720 sq. in. (4645 sq. cm)</td>
<td>1</td>
<td>14 – 40 in. (36 – 102 cm)</td>
<td>419338 3N</td>
</tr>
<tr>
<td>Upright Broiler</td>
<td>Length – 32.5 in. (82.5 cm) Width – 30 in. (76 cm)</td>
<td>2</td>
<td>–</td>
<td>419334 1/2N</td>
</tr>
<tr>
<td>Salamander Broiler</td>
<td>Length – 32.5 in. (82.5 cm) Width – 30 in. (76 cm)</td>
<td>2</td>
<td>–</td>
<td>419334 1/2N</td>
</tr>
<tr>
<td>Wok</td>
<td>14 in. – 30 in. (36 – 76 cm) Diameter 3.75 – 8.0 in. (9.5 – 20 cm) Deep</td>
<td>1</td>
<td>35 – 45 in. (89 – 114 cm)</td>
<td>419341 260</td>
</tr>
<tr>
<td></td>
<td>11 in. – 24 in. (28 – 61 cm) Diameter 3.0 – 6.0 in. (8 – 15.2 cm) Deep</td>
<td></td>
<td>30 – 40 in. (76 – 102 cm)</td>
<td>419335/417332 1N/1NSS</td>
</tr>
</tbody>
</table>
**SPECIFIC APPLICATION BY MODEL**

Dean Industries Gas Fryer, Model 2424 GTI, 120,000 BTU/hr.

**Rating**

This specialized gas fryer can be protected with a combination of a 290 nozzle, Part No. 419342, and a 1W nozzle, Part No. 419336, for low proximity (7 3/4 – 8 in. nozzle height only) and two (2) 230 nozzles, Part No. 419339, for high proximity (45 in. nozzle height only).

The maximum dimension of the fry pot is 24 in. x 24 in. (61 x 61 cm). Nozzles must be positioned and aimed as shown in Figure 58.

**Note:** For low proximity protection, see Special Piping Layout in Figure 59.

---

**Dean Industries Model GTI Gas Fryer Special Piping Layout**

**Section A (Tank to Hood Penetration) Piping Limitations**

- Maximum Length: 30 Ft. (9.1 m)
- Maximum Rise: 6 Ft. (1.8 m)
- Maximum Number of 90° Elbows: 7
- Maximum Number of Tees: 0

---

**Section B (Hood Penetration to Nozzles) Piping Limitations**

1. Piping configuration shall be as shown with ±1/4 in. tolerance on dimensions.
2. All nozzles shall be at the same elevation.
3. Each pair of appliance nozzles shall be equally spaced from left-to-right centerline of fryer.
SPECIFIC APPLICATION BY MODEL (Continued)

Far West Hospitality Products Gas Fryer, Model PAR-1-20, 63000 BTU/hr Rating

This specialized gas fryer can be protected with a single, 290 nozzle, Part No. 419342.

The maximum dimension of the fry pot is 21 in. x 21 in. (53 x 53 cm).

The 290 nozzle must be located on the front-to-rear centerline and aimed at the center of the cooking surface. See Figure 60.

Frymaster 14 KW – 208V Electric Fryer, Model MACH 14 Series

This specialized single vat electric fryer can be protected either with a single 230 nozzle, Part No. 419339, located 27 in. to 47 in. (69 cm to 120 cm) above the top surface of the fryer or with a single 245 nozzle, Part No. 419340, located 20 in. to 27 in. (51 cm to 69 cm) above the top surface of the fryer.

Either nozzle must be located anywhere along or within the perimeter of the cooking surface and aimed at the midpoint. See Figure 104. The maximum size of the fry pot (without drip board) is 13 3/4 in. x 16 3/4 in. (35 cm x 42.6 cm) and the maximum size of the cooking surface (with drip board) is 13 3/4 in. x 20 7/8 in. (35 cm x 53 cm). The vat may be divided in half to make two split vats.

230 NOZZLE TIP OR 245 NOZZLE TIP ANYWHERE ALONG OR WITHIN THE PERIMETER OF THE COOKING SURFACE AND AIMED AT THE MIDPOINT.

290 NOZZLE LOCATED ON FRONT-TO-REAR CENTERLINE ± 4.5 IN. (11.4 cm) FROM SIDE TO SIDE CENTERLINE AND AIMED AT CENTER OF COOKING AREA.
SPECIFIC APPLICATION BY MODEL (Continued)

McDonald Fryer (Nozzle Heights of Less Than 20 In.)

When the 245 nozzle is used to protect McDonald's fryers at heights less than 20 in. (51 cm) above the top of the fryer, the following appliance and distribution piping rules shall apply:

1. Each McDonald's gas or electric fryer shall be protected by one 245 nozzle, Part No. 419340. The fryer vat dimensions for one full vat or two split vats shall not exceed 14 in. x 15 in. (36 cm x 38 cm) without the dripboard and 14 in. x 21 in. (36 cm x 53 cm) with the dripboard.

   The heat input rating of the fryer shall not exceed 122,000 BTU/HR.

   The 245 nozzle shall be located 18 in. to 20 in. (46 cm to 51 cm) above the top of the fryer vat, 2 in. to 2 1/4 in. (5 cm to 5.7 cm) to the right or left of the front-to-rear vat centerline, and 0 to 3 1/4 in. (0 cm to 8 cm) forward of the right-to-left vat centerline, and aimed at the vat center point. See Figure 62.

2. The distance between the start of the first branch line and the start of the last branch line shall not exceed 79 in. (201 cm).

3. The total length of all branch lines shall not exceed 162 in. (412 cm).

4. The 3 gallon agent tank shall be elevated above the connections between the supply and branch lines.

5. The requirements of the following table shall not be exceeded:

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Supply Line</th>
<th>Duct Branch Line</th>
<th>Plenum Branch Line</th>
<th>Appliance Branch Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipe Size</td>
<td>3/8 in.</td>
<td>3/8 in.</td>
<td>3/8 in.</td>
<td>3/8 in.</td>
</tr>
<tr>
<td>Maximum Length</td>
<td>140 in. (356 cm)</td>
<td>67 in. (170 cm)</td>
<td>6 in. (15 cm)</td>
<td>42 in. (107 cm)</td>
</tr>
<tr>
<td>Minimum Length</td>
<td>81 in. (206 cm)</td>
<td>4 in. (10 cm)</td>
<td>4 in. (10 cm)</td>
<td>17 in. (43 cm)</td>
</tr>
<tr>
<td>Maximum 90° Elbows</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Maximum Tees</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Maximum Flow Numbers</td>
<td>11</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Minimum Flow Numbers</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>1/2</td>
</tr>
</tbody>
</table>

Nieco Broiler Model 940, 962 or 960 With Catalytic Converter Protection

Note: Nieco broilers without catalytic converters use standard chain broiler protection options.

Certain models of the Nieco broiler (Models 940, 962, and 960) are equipped with a catalytic converter to comply with new clean air laws. Because of the converter, it is necessary to protect these broilers in a special way. The guidelines for protecting these broilers are as follows:

- The maximum internal broiling area is 29 in. x 23.5 in. (74 cm x 60 cm).

- An R-102 3-gallon system with a maximum of 6 flow numbers, must be used for protection of each broiler, including plenum and duct.

- Each individual broiler must be protected with a minimum of (2) two, 1N nozzles, Part No. 419335. The nozzles must be located as shown in Figure 63a.

- The broiler must be fitted with two 1 in. (2.5 cm) high agent barriers on the angled surface of the broiler. If these have not been completed by the equipment supplier, they must be added in the field.

![Figure 62](image-url)

![Figure 63a](image-url)
SPECIFIC APPLICATION BY MODEL (Continued)

Dunkin Donuts Fryer Model DD400CGF

- **Nozzle Type:** 3N Nozzle (Part No. 419338)
- **Nozzle Spacing:** 11.5 in. (292 mm) maximum from end of fryer and 25.5 in. (647 mm) maximum on centers
- **Nozzle Height:** 35 in. (889 mm) above top of appliance
- **Nozzle Position:** 2 in. (51 mm) in from inside edge of fry vat
- **Nozzle Aim Point:** Along the centerline of fry vat

**Fryer Specifications:**

- **Vat Size:**
  - Length: 122 in. (310 cm)
  - Width: 31.3 in. (79.5 cm)
  - Depth: 11 in. (28 cm)
- **BTU Rating:** 360k
- **Vat Oil Capacity:** 1250 lb. (567 kg)

---

**FIGURE 63b**
SPECIFIC APPLICATION BY MODEL (Continued)

DUKE Chain Broiler – Model FBB

DUKE Chain Broiler With Catalyst View:
- Nozzle Quantity/Type: (1) One 2W nozzle, Part No. 419337
- Nozzle Height: 20 in. (508 mm) above top of appliance
- Nozzle Location: Centered 6 1/2 in. (165 mm) back from front feed edge of appliance
- Nozzle Aiming Point: Aimed at center of opening

DUKE Chain Broiler Without Catalyst:
- Nozzle Quantity/Type: (1) One 2W nozzle, Part No. 419337
- Nozzle Height: 20 in. (508 mm) above top of appliance.
- Nozzle Location: Centered 6 1/2 in. (165 mm) back from front feed edge of appliance.
- Nozzle Aiming Point: Aimed at center of opening.
SPECIFIC APPLICATION BY MODEL (Continued)

Nieco Broiler – Model 950, 960, 980
• Nozzle Quantity/Type: (1) One 2W nozzle, Part No. 419337.
• Nozzle Height: 20 in. (508 mm) above top of appliance. See Figure 64a.
• Nozzle Location: 6 1/2 in. (165 mm) back from front edge of appliance. See Figure 64a.
• Nozzle Aiming Point: Aimed at center of opening. See Figure 64a.

Nieco Broiler – Model 950, 960, 980 (with Catalytic Converter)
• Nozzle Quantity/Type: (2) Two 2W nozzles, Part No. 419337.
• Nozzle Height: 20 in. (508 mm) above top of appliance. See Figure 64b.
• Nozzle Location: 6 1/2 in. (165 mm) back from front edge of appliance. See Figure 64b.
• Nozzle Aiming Point: Aimed at center of opening. See Figure 64b – Side View.
• Nozzle Aiming Point: Aimed at point 3 in. (76 mm) each side of center. See Figure 64b – Front View.

Nieco Broiler – Model 9015 (With or Without Catalytic Converter)
• Nozzle Quantity/Type: (2) Two 2W nozzles, Part No. 419337.
• Nozzle Height: 20 in. (508 mm) above top of appliance. See Figure 65.
• Nozzle Location for Large Chamber: 6 1/2 in. (165 mm) back from front edge of appliance. See Figure 65.
• Nozzle Location for Small Chamber: Nozzle to be located 6 1/2 in. (165 mm) back from front edge of appliance and 12 in. (305 mm) over from large chamber nozzle.
• Nozzle Aiming Point for Large Chamber: Aimed at center of opening. See Figure 65.
• Nozzle Aiming Point for Small Chamber: Nozzle to be aimed 12 in. (305 mm) over from large chamber nozzle aiming point.
SPECIFIC APPLICATION BY MODEL (Continued)

- Nieco Broiler – Model 9025 (With or Without Catalytic Converter)
  - Nozzle Quantity/Type: (2) Two 2W nozzles, Part No. 419337.
  - Nozzle Height: 20 1/2 in. (521 mm) above top of appliance. See Figure 66.
  - Nozzle Location: 6 1/2 in. (165 mm) back from front edge of appliance. See Figure 66.
  - Nozzle Aiming Point: Aimed at center of each opening. See Figure 66.

- Nieco Broiler – Model MPB94 (With Catalytic Converters)
  - Nozzle Quantity/Type: (1) One 2W nozzle, Part No. 419337.
  - Nozzle Height: 20 in. (508 mm) above top of converter. See Figure 67.
  - Nozzle Location: Centered 6 1/2 in. (165 mm) back from any edge of the appliance. See Figure 67.
  - Nozzle Aiming Point: Aimed at center of opening. See Figure 67.
SPECIFIC APPLICATION BY MODEL (Continued)
Marshall Air – Model 2001BK Multi-Chamber Broiler

- **Nozzle Quantity/Type:** (2) Two 1W nozzles, Part No. 419347.
- **Nozzle Location:** Front nozzle tip must be located 14 in. directly above the appliance, aligned with the front face and centerline of the catalytic converter. The aim point is 4 in. forward of the front edge of the converter on the centerline.

The rear nozzle tip is a mirror image of the front. The rear nozzle is located 14 in. vertically above the appliance, aligned with the “rear” face and centerline of the catalytic converter. The aim point is 4 in. behind the “rear” edge of the converter on the centerline.

- **System Limitation:** Maximum of 5 flows for a 3.0 gallon system: Remaining flow points available may be used to protect other hazards.

Marshall Air Electric Broiler – Model FR14B AutoBroil

- **Nozzle Quantity/Type:** One 260 Nozzle (Part No. 419341)
- **Nozzle Height:** 15 – 20 in. (38.1 – 50.8 cm) above the top of the broiler
- **Nozzle Location:** The nozzle must be centered above the front edge of the broiler
- **Nozzle Aiming Point:** Aimed at the center of the exhaust opening of the broiler
SPECIFIC APPLICATION BY MODEL (Continued)

Grease Grabber-80™ Two Stage Filtration System

The Grease Grabber-80 Two Stage Filtration System consists of two components: The primary filter (The Grease-X Tractor) and the secondary filter (The Grease Grabber-80).

The protection required for this application is the same as the standard plenum/filter protection: One (1) 1N Nozzle, Part No. 419335, protecting 10 (3.1 m) linear feet of plenum length by 4 ft. (1.2 m) of plenum chamber depth (width), positioned 2-4 in. (5-10 cm) from peak of secondary filter. See Figure 70.

Krispy Kreme Fryers – Models 150 D/H, 270 D/H, 600 D/H, and 1000 D/H

Nozzle Type: 3N Nozzle (Part No. 419338)
Nozzle Spacing: 11.5 in. (292 mm) maximum from end of fryer and on maximum 25.5 in. (647 mm) centers
Nozzle Height: 35 in. (889 mm) above top of appliance
Nozzle Position: 2 in. (51 mm) from inside edge of fry vat
Nozzle Aim Point: Along centerline of fry vat

Note: Figure 71 shows maximum size fryer (Model 1000 D/H). Smaller size fryers (Models 150 D/H, 270 D/H, and 600 D/H) can be protected with less nozzles but nozzle spacings, height requirements, and positions, must be maintained as shown in Figure 71.
OVERLAPPING NOZZLE COVERAGE

Hazard Zone
The hazard zone is defined as a theoretical, flat and level, rectangular surface, that includes all of the cooking hazards of the protected appliances under a common hood(s). The purpose of the hazard zone is to provide a means of locating the appliances and the overlapping nozzles, as well as aiming the overlapping nozzles. The hazard zone measures 28 in. (711 mm) deep by the length of the cooking hazard(s). The centerline of the hazard zone must bisect the 28 in. (711 mm) depth (from front to back) and run from right-to-left for the full width of the hazard zone.

Overlapping Nozzle Appliance Protection
Overlapping Nozzle Appliance Protection is defined as protection of cooking appliances by nozzles spaced uniformly at uniform elevations under a common hood(s). Overlapping protection of appliances is continuous for the full length of the hood or divided when group(s) of protected appliances are separated by counters or appliances not requiring protection.

Full hood continuous protection is defined as overlapping nozzle appliance protection that covers the appliance line-up located under the total hood length. All appliances requiring protection are the appliances under the hood that can be an ignition source of grease in the hood, grease removal device or the duct.

Group protection is defined as overlapping nozzle appliance protection that protects individual hazard zones located under a common hood. These “groups” of appliances may be separated by appliances not requiring protection, such as steam equipment or work tables, or by dedicated appliance protection, such as salamander broilers.

See Figure 75 (full hood continuous protection) and Figure 76 (multiple group protection).

Dedicated Nozzle Appliance Protection
Appliance protection using dedicated nozzle coverage is defined as protection of cooking appliances with enclosed cooking hazards, such as upright broilers, which cannot be protected with overlapping nozzles and therefore must be protected with nozzles dedicated to the appliance.

General Design Limitations
- If overlapping appliance protection is mixed with dedicated appliance protection on the same pipe system, THE OVERLAPPING APPLIANCE PROTECTION PIPING REQUIREMENTS MUST BE FOLLOWED.
- If a separate dedicated piping system and a separate overlapping piping system is utilized to protect the same hazard area, the two systems MUST NOT share the same expellant gas cartridge.
- The 245 nozzle, Part No. 419340, must be used for “end of zone” protection.
- The 260 nozzle, Part No. 419341, must be used for zone protection.
- Maximum depth of zone is 28 in. (711 mm).
- Refer to overlapping system piping requirements listed in Table 2.
- Nozzle must be located 0 in. to 12 in. (0 mm to 305 mm) forward of zone centerline, aimed back at the zone centerline.
- Nozzles must be spaced a maximum of 11.5 in. (292 mm) from each end of hazard and then a maximum of 25.5 in. (647 mm) on center for the remaining overlapping nozzles until the complete hazard is covered.
- For appliance hazard surfaces with listed protection exceeding the standard hazard zone of 28 in. (71 cm) in depth, the hazard surface(s) must be aligned with the back edge of the hazard zone, with the front edge overhanging the front edge of the zone. See Appliance Chart, Table 1.
- For appliance hazard surfaces that exceed the listed protection sizes, multiple zones must be utilized. Align entire hazard surface area within the multiple zones.
- All hood, duct, and individual appliance protection are as specified in the R-102 Design, Installation, Recharge and Maintenance Manual, Part No. 418087.
- All appliance protection currently listed in the R-102 Design Manual, Part No. 418087, is also approved protection. Zone protection can be considered optional protection.

TABLE 1
Overlapping Nozzle Coverage (Zone Protection)

<table>
<thead>
<tr>
<th>Appliance Type</th>
<th>Maximum Cooking Hazard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fryer</td>
<td>34 in. (864 mm) Deep x 5.8 sq. ft. (54 sq. m)</td>
</tr>
<tr>
<td>Griddle</td>
<td>30 in. (762 mm) Deep x Unlimited Length</td>
</tr>
<tr>
<td>Range</td>
<td>30 in. (762 mm) Deep x Unlimited Length</td>
</tr>
<tr>
<td>Wok, Maximum</td>
<td>30 in. (762 mm) Diameter x 8 in. (203 mm) Deep</td>
</tr>
<tr>
<td>Wok, Minimum</td>
<td>11 in. (279 mm) Diameter x 3 in. (76 mm) Deep</td>
</tr>
<tr>
<td>Braising Pan/Tilt Skillet*</td>
<td>34 in. (864 mm) Deep x Unlimited Length</td>
</tr>
<tr>
<td>Lava Rock</td>
<td>26 in. (660 mm) Deep x Unlimited Length</td>
</tr>
<tr>
<td>Char-Broiler (see Note 1)</td>
<td>Great Broiler (6 in. (15 cm) Maximum Fuel Depth)</td>
</tr>
<tr>
<td>Charcoal Broiler</td>
<td>30 in. (762 mm) Deep x Unlimited Length</td>
</tr>
<tr>
<td>Mesquite Wood Broiler</td>
<td>30 in. (762 mm) Deep x Unlimited Length</td>
</tr>
<tr>
<td>Broiler</td>
<td>6 in. (152 mm) Maximum Fuel Depth</td>
</tr>
<tr>
<td>Gas Radiant Char-Broiler</td>
<td>36 in. (914 mm) Deep x Unlimited Length</td>
</tr>
<tr>
<td>Electric Char-Broiler</td>
<td>34 in. (864 mm) Deep x Unlimited Length</td>
</tr>
</tbody>
</table>

* See Figure 72 for nozzle location

**Note 1:** Always try to place Lava Rock Char-Broiler(s) near the center of the zone. When the Lava Rock Char-Broiler is the first or last appliance in the zone, the outside edge of the broiler must not be more than 6 in. (15 cm) outside the end nozzle.
OVERLAPPING NOZZLE COVERAGE (Continued)

Overlapping Appliance Nozzle and Hazard Zone Locations

1. All overlapping appliance nozzles must be the 245 nozzle, Part No. 419340, for "end of zone" protection and the 260 nozzle, Part No. 419341, for zone protection, and must be located under a common hood at the same height above the hazard zone, in a straight line from right to left and aimed at the centerline of the hazard zone. The overlapping nozzle is used for both continuous overlapping and multiple group overlapping protection.

2. The hazard zone must be positioned (located) so that all appliance hazard surfaces are within the zone. For appliance hazard surfaces with listed protection exceeding the standard hazard zone size of 28 in. (71 cm) in depth (see Table 1), the hazard surface(s) must be aligned with the back edge of the hazard zone, with the front edge overhanging the front of the zone.

3. The overlapping appliance nozzles must be located 40 in. to 45 in. (1 m to 1.1 m) above the top surface of the protected appliances. See Figure 74.

   Exception No. 1: Nozzle dimensions for wok protection are measured to bottom of wok. Exception No. 2: When using overlapping appliance nozzles in areas where there is a back shelf, the nozzle cannot be positioned in the shaded area as shown in Figure 73.

   Also, back shelf must not extend more than 11 in. (279 mm) over the hazard zone and cannot be less than 18 in. (457 mm) above the hazard zone. See Figure 73.

4. The overlapping appliance nozzles must be located 0 in. to 12 in. (0 mm to 305 mm) forward of the centerline or aimline of the selected hazard zone. See Figure 74.

Table 2
Overlapping System Piping Limitations

<table>
<thead>
<tr>
<th>System Size</th>
<th>Total Flow Numbers</th>
<th>Max. 3/8 in. Max. Pipe Length</th>
<th>No. of Elbows</th>
<th>Maximum Elevation Rise</th>
<th>Cartridge Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Gallon</td>
<td>6</td>
<td>75 ft. (22.9 m)</td>
<td>25</td>
<td>10 ft. (3.1 m)</td>
<td>LT-30-R</td>
</tr>
<tr>
<td>6 Gallon</td>
<td>12</td>
<td>75 ft. (22.9 m)</td>
<td>25</td>
<td>10 ft. Double</td>
<td>Tank</td>
</tr>
</tbody>
</table>

50 ft. (15.2 m) maximum pipe from first to last nozzle.

50 ft. (15.2 m) maximum pipe after the split on a split system.
OVERLAPPING NOZZLE COVERAGE (Continued)

Overlapping Appliance Nozzle and Hazard Zone Locations – Group Protection

1. For each group of protected appliances under a common hood(s), the overlapping nozzles must be located from right to left so that each end nozzle is located a maximum of 11.5 in. (292 mm) inside the outside edge of the cooking hazard of each end appliance, and the inside overlapping nozzles must be located between the two end nozzles at a maximum spacing of 25.5 in. (647 mm). See Figures 75 and 76.

2. When obstructions are located adjacent to appliance(s) protected by overlapping nozzles, the overlapping appliance nozzle spacing must start with the appliance(s) adjacent to the obstruction. See Figure 77.

3. When an appliance requires dedicated protection with a protected area intended for overlapping appliance nozzle protection, the group protection option will be required for appliances on either side of the appliances using dedicated protection. Group protection using overlapping appliance nozzles must begin with the protected appliance(s) adjacent to the dedicated appliance protected. An overlapping appliance nozzle(s) must be positioned within 11.5 in. (292 mm) of the edge(s) of the appliance hazard surface area(s) adjacent to the dedicated nozzle protection. See Figure 78.
OVERLAPPING NOZZLE COVERAGE (Continued)

Overlapping Appliance Nozzle and Hazard Zone Locations –
Group Protection (Continued)

4. On protected appliances, all hazard surfaces located in a
group must be within 40-45 in. (1-1.1 m) from the nozzle(s).
Once that dimension is exceeded, a new group must be start-
ed. See Figure 79.

Note: The supply pipe feeding nozzle groups is to be at the
same elevation. Adjust height for each group only by varying
lengths of nozzle drops.

Detection Requirements For Overlapping Appliance
Protection

When utilizing overlapping appliance protection, fusible link detec-
tors must be installed on a maximum of 2 ft. (.61 m) centers,
starting with detectors located in (under) the duct opening(s).
Starting from the detector under the duct opening, add detectors
on 2 ft. (.61 m) maximum spacing until the complete length of the
plenum area is covered, from one end to the other. The location of
the last detector on each end of the plenum must not exceed
2 ft. (.61 m) from end of plenum.

Note: Standard detector placement can also be utilized when
using overlapping protection. However, the overlapping detector
option cannot be used when utilizing standard R-102 protection.
Refer to Pages 4-53 and 4-54 for detector placement.
TANK AND CARTRIDGE REQUIREMENTS

Once the hazard analysis is completed and the total nozzle flow numbers are established, the quantity and size of agent tanks and cartridges needed to supply the nozzles with the proper volumes of agent at the proper flow rates can be determined. For cartridges used in the regulated release mechanism, flow capacities, tank quantities and sizes, and regulated release cartridge options are given in the table below.

<table>
<thead>
<tr>
<th>Total Flow Numbers*</th>
<th>Tank(s)</th>
<th>Gas Type</th>
<th>Cartridge Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 – 5</td>
<td>(1) 1.5 Gallon</td>
<td>Nitrogen</td>
<td>LT-20-R 101-10</td>
</tr>
<tr>
<td>6 – 11</td>
<td>(1) 3.0 Gallon</td>
<td>Carbon Dioxide</td>
<td>LT-30-R 101-20</td>
</tr>
<tr>
<td>11 – 16</td>
<td>(1) 1.5 Gallon</td>
<td></td>
<td>Double 101-30</td>
</tr>
<tr>
<td></td>
<td>(1) 3.0 Gallon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 – 22</td>
<td>(2) 3.0 Gallon</td>
<td></td>
<td>Double 101-30**</td>
</tr>
</tbody>
</table>

When one or more regulated actuators are used, the following tank and cartridge combinations apply for each regulated actuator:

- **Regulated Actuator Tank(s)**
  - (1) 1.5 Gallon
  - (1) 3.0 Gallon
  - (1) 1.5 Gallon and (1) 3.0 Gallon
  - (2) 3.0 Gallon
- **Regulated Actuator Cartridge**
  - LT-20-R or 101-10
  - LT-30-R or 101-20
  - LT-A-101-30 or 101-30** or double tank
  - LT-A-101-30 or 101-30** or double tank

* For exceptions to maximum flow numbers, see Distribution Piping Requirements for 1.5 gallon and 3.0 gallon systems in this Section.

** The 101-30 cartridge can not be used when (2) two 3.0 gallon tanks are manifolded together.

For higher total flow numbers (23 to 110), multiple cartridges and regulated actuators are required as shown in the System Selection Guide in Section IX – Appendix.

---

ACTUATION AND EXPPELLANT GAS LINE REQUIREMENTS

This section contains the guidelines for installing the actuation and expellant gas lines between the regulated release mechanism regulator, each regulated actuator regulator, and each agent tank. These limitations should be considered when selecting the component mounting locations.

**Actuation Gas Line – 6 to 8** 8 Tank maximum reflects the utilization of 3 tank regulated actuators.

1. Use only 1/4 in. Schedule 40 black iron, hot-dipped galvanized, chrome-plated, or stainless steel pipe and fittings.
2. The actuation gas line piping is installed from the regulated release mechanism to each regulated actuator connected within the system. The total length of the actuation gas line from the regulated release assembly to the regulated actuator assembly(ies) **must not exceed** 20 ft. (6 m) when using an LT-20-R, an LT-30-R nitrogen cartridge, or a 101-10 or a 101-20 carbon dioxide cartridge. See Figure 80.

---

**FIGURE 80**

**ACTUATION GAS LINE WITH AN LT-20-R, LT-30-R, 101-10 OR 101-20 CARTRIDGE**

**NOT INCLUDED IN ACTUATION GAS LINE LENGTH TOTALS**
ACTUATION AND EXPELLANT GAS LINE REQUIREMENTS (Continued)

Actuation Gas Line – 6 to 8* Tanks Maximum (Continued)

3. If an expellant gas line is connected to the regulated release assembly along with an actuation gas line, the total combined length of the actuation and expellant gas line must not exceed 30 ft. (9 m) when using a “double-tank” nitrogen cartridge or a LT-A-101-30 nitrogen cartridge or a 101-30 carbon dioxide cartridge. See Figure 81.

4. A combined total of nine fittings may be used in these lines, eight 90° elbows and one tee. Two 45° elbows equal one 90° elbow.

Actuation Gas Line – 10 to 15* Tanks Maximum

* 15 Tank maximum reflects the utilization of 3 tank regulated actuators.

1. Use only 1/4 in. Schedule 40 black iron, hot-dipped galvanized, chrome-plated, or stainless steel pipe and fittings. NOTE: Stainless steel hose and fittings can also be used. See Component Section for detailed information.

2. The actuation gas line piping is installed from the 101 remote mechanical release to each R-102 regulated actuator assembly. The total length of the actuation gas line from the remote mechanical release to the regulated actuator assemblies must not exceed 100 ft. (30.5 m).

3. A combined total of 20 elbows and 9 tees may be used in these lines. Two 45° elbows equal one 90° elbow. See Figure 82.

4. Use only a 101-10 carbon dioxide cartridge in the 101 remote mechanical release.

5. A safety vent relief valve (Part No. 15677) is required in the actuation gas line to relieve residual pressure after actuation.

Actuation Gas Line – 10 to 15 Tank* Maximum – Using 1/4 in. Stainless Steel Hose

* 15 Tank maximum reflects the utilization of 3 tank regulated actuators.

1. Maximum hose length cannot exceed 17.5 ft. (5.3 m)

2. Maximum of 5 regulated actuators allowed

3. Actuated with remote release (Part No. 433485) or Regulated Release Assembly (Part No. 429853)

* 15 Tank maximum reflects the utilization of 3 tank regulated actuators.
ACTUATION AND EXPELLENT GAS LINE REQUIREMENTS
(Continued)

Expellant Gas Line

1. The expellant gas line piping is installed from the regulated release mechanism in double and multiple-tank systems, and from the regulated actuator assembly in multiple-tank systems. The expellant gas line is the piping between the regulator and the tank-enclosure/tank-bracket assembly. The total length of the expellant gas line from the regulated release mechanism or each regulated actuator assembly must not exceed 30 ft. (9 m) when using a “double-tank” cartridge, an LT-A-101-30 Cartridge, or a 101-30 Cartridge. See Figures 83 and 84.

2. A combined total of nine fittings may be used in these lines, eight 90° elbows and one tee. Two 45° elbows equal one 90° elbow.

3. If two tanks are connected to the regulated release assembly in a multiple-tank system arrangement, the total combined length of the actuation and expellant gas lines must not exceed 30 ft. (9 m) when using a “double-tank” nitrogen cartridge, an LT-A-101-30 nitrogen cartridge, or a 101-30 carbon dioxide cartridge. See Figure 81.

DISTRIBUTION PIPING REQUIREMENTS

Once the nozzle placement and quantity of tanks has been determined, it is then necessary to determine the piping configurations between the tank adaptor and each discharge nozzle. This section contains the guidelines and limitations for designing the distribution piping so that the liquid agent will discharge from the nozzles at a proper flow rate. These limitations should also be referred to when selecting the mounting location for the regulated release mechanism and agent tank.

General Piping Requirements

1. All R-102 system piping is straight line. Therefore, the need for critical lengths and balancing is minimized.

2. Two 45° elbows count as one 90° elbow.

3. Each branch line includes the tee or elbow leading to it, and all fittings within the branch line itself.

4. The minimum piping length of Schedule 40, 3/8 in. pipe from the tank outlet to any nozzle protecting a range, fryer, or wok must be 6 ft. (1.8 m).

5. Pipe lengths are measured from center of fitting to center of fitting. See Figure 85.

6. All distribution piping must be 3/8 in. Schedule 40 black iron, chrome-plated, or stainless steel. Do not use hot dipped galvanized pipe on the distribution piping.

7. All threaded connections located in and above the protected area must be sealed with pipe tape. Tape should be applied to male threads only. Make certain tape does not extend over the end of the thread, as this could cause possible blockage of the agent distribution.

8. Before installing blow-off caps on nozzles, apply a small amount of Dow Corning No. 111 silicone grease across the opening in the nozzle tip and also a small amount coating the exterior of the blow-off cap. This will help keep cooking grease from building up on the cap.

9. Tees used in the distribution piping can be used as thru tees, side outlet tees, or bull tees.
Supply and Branch Line Identification

The R-102 distribution piping network is broken down into four specific pipe runs: the Supply Line, the Duct Branch Line, the Plenum Branch Line, and the Appliance Branch Line. See Figure 86.

**SUPPLY LINE**

The Supply Line is defined as the length of pipe which runs from the agent tank outlet to the last branch line (whether a duct, appliance, or plenum branch line). This includes all supply line fittings except for the tees or elbows leading to the branch lines. See Figures 86 and 87.
NOTICE
Branch lines cannot start ahead of a supply line tee.

DUCT BRANCH LINE
The Duct Branch Line is defined as the length of pipe which runs from the supply line to the duct nozzle(s). This includes all branch line fittings as well as the tee or elbow used to start the branch line. See Figures 87 and 88.

PLENUM BRANCH LINE
The Plenum Branch Line is defined as the length of pipe which runs from the supply line to the plenum nozzle(s). This includes all branch line fittings as well as the tee or elbow used to start the branch line. See Figures 86 and 89.

APPLIANCE BRANCH LINE
The Appliance Branch Line is defined as the length of pipe which runs from the supply line to the appliance nozzle(s). This includes all branch line fittings as well as the tee or elbow used to start the branch line. See Figures 87 and 90.
DISTRIBUTION PIPING REQUIREMENTS (Continued)

Distribution Piping Requirements – 1.5 Gallon System

DUCT, PLENUM, AND APPLIANCE PROTECTION

1. This option allows for duct protection, plenum protection, appliance protection, or any combination.

2. When using a combination of plenum and duct protection only, only one duct nozzle, either a 1W, or a 2W, may be used.

3. All distribution piping, supply and branch, must be 3/8 in. Schedule 40 black iron, chrome-plated, or stainless steel.

4. Each 1.5 gallon tank allows a maximum of five flow numbers.*

5. The pipe length between the start of the first branch line and the start of the last branch line must not exceed 8 ft. (2.4 m). When the supply line is split, the combined length of both legs of the supply line (start of first branch line to start of last branch line) must not exceed 8 ft. (2.4 m). See Figure 91.

6. The combined length of all branch lines must not exceed 22 ft. (6.7 m). See Figure 92.

7. The requirements of the following table must not be exceeded:

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Supply</th>
<th>Duct Branch Line</th>
<th>Plenum Branch Line</th>
<th>Appliance Branch Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipe Size</td>
<td>3/8 in.</td>
<td>3/8 in.</td>
<td>3/8 in.</td>
<td>3/8 in.</td>
</tr>
<tr>
<td>Maximum Length</td>
<td>40 ft.</td>
<td>6 ft. (12.2 m)</td>
<td>4 ft. (1.2 m)</td>
<td>10 ft. (3 m)</td>
</tr>
<tr>
<td>Maximum Rise</td>
<td>6 ft. (1.8 m)</td>
<td>4 ft. (1.2 m)</td>
<td>2 ft. (.6 m)</td>
<td>2 ft. (.6 m)</td>
</tr>
<tr>
<td>Maximum 90° Elbow</td>
<td>9</td>
<td>4</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Maximum Tees</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Maximum Flow Numbers</td>
<td>5*</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

* Exceptions:

1. Six (6) flow numbers are allowed when a duct branch line is the last branch line on the piping network and no 1N nozzles are used to protect woks or griddles.

2. Six (6) flow numbers are allowed when six (6) 1N nozzles are used and none of the nozzles are used to protect woks, griddles, ranges, and salamanders.

3. Six (6) flow numbers are allowed when only two (2) 3N nozzles are used.
DISTRIBUTION PIPING REQUIREMENTS (Continued)

Distribution Piping Requirements – 3.0 Gallon System

1. The maximum length between the start of the first branch line and the start of the last branch line must not exceed 24 ft. (7.3 m). When the supply line is split, the combined total of both legs of the supply line (from the start of the first branch line to the start of the last branch line) must not exceed 24 ft. (7.3 m). See Figure 93.

2. The total length of all branch lines must not exceed 36 ft. (10.9 m). See Figure 93.

3. Use a 3/8 in. union to connect the tank adaptor to the 3/8 in. supply line.

4. A maximum of two nozzles are allowed per duct branch line.

5. The requirements of the following table must not be exceeded:

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Supply Line</th>
<th>Duct Branch Line</th>
<th>Plenum Branch Line</th>
<th>Appliance Branch Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipe Size</td>
<td>3/8 in.</td>
<td>3/8 in.</td>
<td>3/8 in.</td>
<td>3/8 in.</td>
</tr>
<tr>
<td>Maximum Length</td>
<td>40 ft.</td>
<td>8 ft.</td>
<td>4 ft.</td>
<td>12 ft.</td>
</tr>
<tr>
<td>(12.2 m)</td>
<td>(2.4 m)</td>
<td>(1.2 m)</td>
<td>(.6 m)</td>
<td>(3.7 m)</td>
</tr>
<tr>
<td>Maximum Rise</td>
<td>6 ft.</td>
<td>4 ft.</td>
<td>2 ft.</td>
<td>2 ft.</td>
</tr>
<tr>
<td>(1.8 m)</td>
<td>(1.2 m)</td>
<td>(.6 m)</td>
<td>(.6 m)</td>
<td></td>
</tr>
<tr>
<td>Maximum 90° Elbows</td>
<td>9</td>
<td>4</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Maximum Tees</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Maximum Flow Numbers</td>
<td>11*</td>
<td>4</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

*Exceptions:
1. Twelve (12) flow numbers are allowed in any one tank for duct and plenum protection only.
2. Twelve (12) flow numbers are allowed with any one tank using only two-flow appliance nozzles.
3. Twelve (12) flow numbers are allowed with any one tank using only three-flow appliance nozzles.

Special Instructions:
1. Twelve (12) flow numbers are allowed when four (4) Dean Industries GTI Gas Fryers are protected at low proximity as shown in Figure 58 on Page 4-32. The discharge piping must be as shown in Figure 59 on Page 4-32.
2. For certain McDonald’s applications, 11.5 flow numbers are allowed when using a combination of one (1) 2W duct nozzle, one (1) 1/2N electrostatic precipitator nozzle, one (1) 1N plenum nozzle, and four (4) two-flow appliance nozzles. Contact Ansul Applications Engineering Department for additional information.
DISTRIBUTION PIPING REQUIREMENTS (Continued)

Distribution Piping Requirements – 6.0 Gallon Manifolded System

As an option to piping two (2) 3.0 gallon tanks separately, two (2) 3.0 gallon tanks can be manifolded together to share a common agent distribution line. Only (2) 3.0 gallon tanks connected to the same regulator can be manifolded. The following requirements must be met when manifolding:

1. All piping must be 3/8 in. Schedule 40.
2. See Figure 95 for tank connections.
3. The length of supply line piping between the start of the first branch line and the start of the last branch line must not exceed 24 ft. (7.3 m). See Figure 94. When the supply line is split, the combined total of both legs of the supply line (from the start of the first branch line to the start of the last branch line) must not exceed 24 ft. (7.3 m).
4. The combined length of all branch lines must not exceed 36 ft. (10.9 m). See Figure 94.
5. A maximum of 22 flow numbers are allowed.
6. The requirements of the following table must not be exceeded.

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Supply Line</th>
<th>Duct Branch Line</th>
<th>Plenum Branch Line</th>
<th>Appliance Branch Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipe Size</td>
<td>3/8 in.</td>
<td>3/8 in.</td>
<td>3/8 in.</td>
<td>3/8 in.</td>
</tr>
<tr>
<td>Maximum Length</td>
<td>32 ft. (9.7 m)</td>
<td>8 ft. (2.4 m)</td>
<td>4 ft. (1.2 m)</td>
<td>12 ft. (3.7 m)</td>
</tr>
<tr>
<td>Maximum Rise</td>
<td>6 ft. (1.8 m)</td>
<td>4 ft. (1.2 m)</td>
<td>2 ft. (.6 m)</td>
<td>2 ft. (.6 m)</td>
</tr>
<tr>
<td>Maximum 90° Elbows</td>
<td>8</td>
<td>4</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Maximum Tees</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Maximum Flow Numbers</td>
<td>22</td>
<td>4</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>
DISTRIBUTION PIPING REQUIREMENTS (Continued)

Distribution Piping Requirements – 6.0 Gallon Manifolded System (Continued)

This configuration consists of two 3 gallon tanks. Both tanks are connected to a common manifold tee and are pressurized from a single double tank (Part No. 73022) nitrogen cartridge in the regulated release assembly. See Figure 95. **Note:** A tank mounting bracket can be utilized instead of the tank/enclosure assembly.  
> See Figure 97.

**Note 1:** The pipe connection from tank center to tank center cannot exceed 8-1/2 in. (21.5 cm). Also, OEM release/bracket assembly can be utilized when manifolding 3.0 gallon tank.

**Note 2:** Only 3 gallon tanks can be manifolded.

**Distribution Piping Requirements – 6.0 Gallon System with Independent Pipe Runs**

Independent pipe runs can also be used with the regulated release assembly and the tank/enclosure assembly. See Figure 96. When manifolding is not used, each of the two (2) 3 gallon tanks utilize the piping limitations of a single tank system.
DISTRIBUTION PIPING REQUIREMENTS (Continued)

Distribution Piping Requirements – 9.0 Gallon System

This optional configuration consists only of three 3-gallon tanks, all pressurized from a single double-tank nitrogen cartridge with expellant gas hoses connected as shown in Figure 97. Tanks No. 1 and No. 2 must be connected directly to the regulator with separate expellant gas hoses and Tank No. 3 must be connected to Tank No. 2 with a third expellant gas hose as shown in Figure 97. Each tank must be connected to an independent distribution piping network as shown in Figure 97. Distribution piping requirements for each network must be as follows:

1. The maximum length between the start of the first branch line and the start of the last branch line must not exceed 24 ft. (7.3 m). When the supply line is split, the combined total of both legs of the supply line (from the start of the first branch line to the start of the last branch line) must not exceed 24 ft. (7.3 m). See Figure 93.

2. The total length of all branch lines must not exceed 36 ft. (10.9 m). See Figure 93.

3. Use a 3/8 in. union to connect the tank adaptor to the 3/8 in. supply line.

4. A maximum of two nozzles are allowed per duct branch line.

5. When using this 9.0 gallon system configuration, no manifolding of distribution piping is allowed.

6. When an ANSUL AUTOMAN Regulated Release is utilized in this configuration, additional regulator actuators cannot be used.

7. Only 3 gallon tanks can be utilized in this configuration.

8. The requirements of the following table must not be exceeded for each 3 gallon tank:

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Supply Line</th>
<th>Duct Branch Line</th>
<th>Plenum Branch Line</th>
<th>Appliance Branch Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipe Size</td>
<td>3/8 in.</td>
<td>3/8 in.</td>
<td>3/8 in.</td>
<td>3/8 in.</td>
</tr>
<tr>
<td>Maximum Length</td>
<td>40 ft.</td>
<td>8 ft.</td>
<td>4 ft.</td>
<td>12 ft.</td>
</tr>
<tr>
<td></td>
<td>(12.2 m)</td>
<td>(2.4 m)</td>
<td>(1.2 m)</td>
<td>(3.7 m)</td>
</tr>
<tr>
<td>Maximum Rise</td>
<td>6 ft.</td>
<td>4 ft.</td>
<td>2 ft.</td>
<td>2 ft.</td>
</tr>
<tr>
<td></td>
<td>(1.8 m)</td>
<td>(1.2 m)</td>
<td>(.6 m)</td>
<td>(.6 m)</td>
</tr>
<tr>
<td>Maximum 90° Elbows</td>
<td>9</td>
<td>4</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Maximum Tees</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Maximum Flow Numbers</td>
<td>11*</td>
<td>4</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

*Exceptions:
1. Twelve (12) flow numbers are allowed in any one tank for duct and plenum protection ONLY.
2. Twelve (12) flow numbers are allowed with any one tank using only two-flow appliance nozzles.
3. Twelve (12) flow numbers are allowed with any one tank using only three-flow appliance nozzles.

Special Instructions:
1. When four (4) Dean Industries GTI Gas Fryers are protected at low proximity as shown in Figure 58 on Page 4-32, the discharge piping must be as shown in Figure 59 on Page 4-32.
2. For certain McDonald’s applications, 11.5 flow numbers are allowed when using a combination of one (1) 2W duct nozzle, one (1) 1/2N electrostatic precipitator nozzle, one (1) 1N plenum nozzle, and four (4) two-flow appliance nozzles. Contact Ansul Applications Engineering Department for additional information.
DETECTION SYSTEM REQUIREMENTS

Once the fire suppression system design has been determined, a detection system design must be completed. This section contains guidelines and limitations for detection system installation.

Detector Identification

The two types of detectors are distinguished from each other by their location in the detection system.

1. The Terminal Detector (Part No. 56838, 15375, or 417368) is the last in a series of detectors, or the only detector used in a single-detector system. This detector is thus named because it is at the point at which the wire rope ends, or “terminates.”

2. A Series Detector (Part No. 56837, 15373, or 417369) is any detector located in-line between the regulated release mechanism and the terminal detector.

Detector/Pulley Elbow Quantity

The quantity of detectors used in the system will vary depending on the style of detector used.

1. Conduit runs, pulley elbows, and number of detectors per system must be within the approved system guidelines. The following requirements must not be exceeded:

<table>
<thead>
<tr>
<th>Detector Style</th>
<th>Maximum Detectors per System</th>
<th>Maximum Elbows per System</th>
<th>Maximum Length of 1/2 in. Conduit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clip on Style</td>
<td>12</td>
<td>18</td>
<td>125 ft. (38.1 m)</td>
</tr>
<tr>
<td>Hinge Style</td>
<td>5</td>
<td>8</td>
<td>103 ft. (31.3 m)</td>
</tr>
<tr>
<td>Scissors Style</td>
<td>15</td>
<td>20</td>
<td>150 ft. (45.7 m)</td>
</tr>
</tbody>
</table>

2. If hinge style detectors are mixed in a system with either clip-on or scissor style, 4 series and 1 terminal is the maximum number allowed. If clip-on style are mixed with scissor style, the maximum allowed is 11 series and 1 terminal.

NOTICE

When using the “clip-on” style detector, the terminal detector may use the “hinged” style mounting bracket with the “clip-on” style linkage. This is only allowed with the terminal detector. **No other linkages are allowed to be mixed with other brackets.** When using this option, the total number of “clip-on” style detectors (11 series and 1 terminal) is still allowed.

3. If hinge style detectors are mixed in a system with either clip-on or scissor style, the maximum length of wire rope must not exceed 103 ft. (31.4 m) and the maximum number of pulley elbows must not exceed 8. If clip-on style are mixed with scissor style, the maximum length of wire rope must not exceed 125 ft. (3.81 m) and the maximum number of pulley elbows must not exceed 18.

4. If the hazard requires more than 15 detectors, up to five 101 Remote Releases (Part No. 32381) can be used for system actuation. Each 101 remote release allows the use of a maximum of 15 “scissor” style detectors (14 series and 1 terminal) for a total of 75 detectors if needed.

Detector Placement Requirements

**EXHAUST DUCTS**

Each exhaust duct must have at least one detector installed in the duct entrance, located in the airstream of the cooking vapors, or at a maximum of 20 ft. (6.1 m) into the duct opening. See Figure 98.

**NOTICE**

When gas appliances are used and the flue gases from the burner are exhausted into the duct, the detector must be kept out of the air stream of these exhaust gases. These gases can be very hot and could actuate the system unnecessarily.

Duct openings that are long and narrow or large enough to require multiple duct nozzles may require additional detectors.

**ELECTROSTATIC PRECIPITATOR**

If an electrostatic precipitator is located at or near the base of the exhaust duct, it is necessary to locate a detector below the precipitator, at the base of the duct, and also locate one in the duct, just above the precipitator. See Figure 99.

When installing the detector bracket and system conduit, make certain they do not interfere with the operation of the precipitator.

**Note:** On secondary filtration units utilizing multiple filter stages/media, contact Ansul Technical Services for instructions.
Detector Replacement Requirements (Continued)

COOKING APPLIANCES

If the cooking appliance is located under an exhaust duct where a detector has been mounted, it is normally not necessary to utilize another detector for that cooking appliance, provided the detector is not more than 12 in. (30 cm) into the duct. See Figure 100.

Each cooking appliance with a continuous cooking surface not exceeding 48 in. x 48 in. (122 x 122 cm) can be protected by a minimum of one detector. Cooking appliances with a continuous cooking surface exceeding 48 in. x 48 in. must be protected by at least one detector per 48 in. x 48 in. cooking area. Detectors used for cooking appliances must be located above the protected appliance toward the exhaust duct side of the appliance. The detector should be located in the air stream of the appliance to enhance system response time.

Note: For overlapping detector coverage, see Page 4-42 for design requirements.

Detection Line Requirements

CONDUIT

Rigid conduit or 1/2 inch EMT thin-wall conduit may be used. Standard steel conduit fittings (compression type are recommended) must be employed to properly install the detection system. All conduit or pipe must be firmly supported. When using pipe, make certain that all ends are carefully reamed, deburred and blown clear of chips and scale before assembly.

NOTICE

The conduit offset can be used at the top or bottom of the regulated release to change direction of the conduit. The conduit offset cannot be used with pulley tees. All other changes in direction must be made by using ANSUL approved pulley elbows, Part No. 423254 or 415670. See Figure 101.

Fusible Link Selection

When possible, temperature readings should be taken at each detector location to determine correct fusible link temperature rating. Temperature can be recorded using either a maximum registering thermometer, Part No. 15240, temperature tape or any other accurate thermometer.

Select correct UL Listed fusible link(s) for installation in detector(s) according to the temperature condition. Two styles are available. See Figure 102. See Component Section for detailed temperature ratings.
MANUAL PULL STATION REQUIREMENTS

A remote manual pull station allows the R-102 system to be manually operated at some point distant from the regulated release assembly. The pull station should be installed at a height of 42-48 in. (107-122 cm), in accordance with the requirements of the American Disabilities Act (ADA) and the Authority having Jurisdiction, and located in the path of egress. The pull station is the only source of manual actuation of the regulated release assembly.

The total length of the cable used for each manual pull station within a system must not exceed 150 ft. (46 m).

The maximum number of pulley elbows that may be used per pull station is 20.

One pulley tee, Part No. 427929, is allowed per system.

The maximum length of cable from the AUTOMAN to a pull station is 150 ft. (45.7 m) with a maximum of 20 pulley elbows used per side of the tee. As the tee is located farther from the AUTOMAN, the 150 ft. (45.7 m) maximum must be observed but as pulley elbows are placed between the AUTOMAN and the tee, they must be deducted from the available pulley elbows (20) allowed on each side.

Example: If 10 pulley elbows are placed between the AUTOMAN and the pulley tee, the maximum available pulley elbows left for use on each side of the tee is 10 per side. See Figure 103 for three different examples. (Note: Both must be gas valves or both must be pull stations. Mixing is not allowed.)

TEE CLOSE TO AUTOMAN (EXAMPLE)

TEE CLOSE TO GAS VALVES OR MANUAL PULL (EXAMPLE)

TEE HALFWAY BETWEEN AUTOMAN AND GAS VALVES OR MANUAL PULL (EXAMPLE)

Metal Stamped Style – Part No. 4835 or 54011

Parts that may be used for installation of a metal stamped remote manual pull station are:

<table>
<thead>
<tr>
<th>Description</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote Manual Pull Station Assembly*</td>
<td>54011</td>
</tr>
<tr>
<td>Remote Manual Pull Station Assembly</td>
<td>4835</td>
</tr>
<tr>
<td>Pulley Elbow</td>
<td>423250</td>
</tr>
<tr>
<td>Pulley Elbow</td>
<td>415670</td>
</tr>
<tr>
<td>Pulley Tee</td>
<td>427929</td>
</tr>
</tbody>
</table>

*Assembly includes parts listed below:

- 1/16 in. Stainless Steel Cable 50 ft. (15 m) 15821
- Oval Press-To-Crimp Sleeves 4596
- Glass Break Rod (1) 4834

MECHANICAL GAS VALVE REQUIREMENTS

An ANSUL or ANSUL approved mechanical gas shut-off valve system can be attached to the R-102 system. The system works both mechanically and pneumatically by use of an air cylinder located inside the regulated release assembly. Upon actuation of the fire suppression system, a pneumatically-operated air cylinder assembly will mechanically close the gas shut-off valve.

The total length of the cable for each mechanical gas valve must not exceed 150 ft. (46 m). The maximum number of pulley elbows that may be used is 20 for each valve.

One pulley tee (Part No. 427929) is allowed per system.

The maximum length of cable from the AUTOMAN to a gas valve is 150 ft. (45.7 m) with a maximum of 20 pulley elbows used per side of the tee. As the tee is located farther from the AUTOMAN, the 150 ft. (45.7 m) maximum must be observed but as pulley elbows are placed between the AUTOMAN and the tee, they must be deducted from the available pulley elbows (20) allowed on each side.

Example: If 10 pulley elbows are placed between the AUTOMAN and the pulley tee, the maximum available pulley elbows left for use on each side of the tee is 10 per side. See Figure 103 for three different examples.

Parts that may be used for installation of a Mechanical Gas Shut-off Valve are:

<table>
<thead>
<tr>
<th>Description</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas Valve/Actuator 3/4 in. Assembly (ANSUL)*</td>
<td>55598</td>
</tr>
<tr>
<td>Gas Valve/Actuator 1 in. Assembly (ANSUL)*</td>
<td>55601</td>
</tr>
<tr>
<td>Gas Valve/Actuator 1 1/4 in. Assembly (ANSUL)*</td>
<td>55604</td>
</tr>
<tr>
<td>Gas Valve/Actuator 1 1/2 in. Assembly (ANSUL)*</td>
<td>55607</td>
</tr>
<tr>
<td>Gas Valve/Actuator 2 in. Assembly (ANSUL)*</td>
<td>55610</td>
</tr>
<tr>
<td>Gas Valve/Actuator 2 1/2 in. Assembly (ASCO)*</td>
<td>25937</td>
</tr>
<tr>
<td>Gas Valve/Actuator 3 in. Assembly (ASCO)*</td>
<td>25938</td>
</tr>
<tr>
<td>Pulley Elbow</td>
<td>423250</td>
</tr>
<tr>
<td>Pulley Elbow</td>
<td>415670</td>
</tr>
<tr>
<td>Pulley Tee</td>
<td>427929</td>
</tr>
<tr>
<td>1/16 in. Stainless Steel Cable</td>
<td>15821</td>
</tr>
<tr>
<td>50 ft. (15 m) or 500 ft. (152 m) roll</td>
<td>79653</td>
</tr>
<tr>
<td>Oval Press-To-Crimp Sleeve</td>
<td>4596</td>
</tr>
<tr>
<td>Stop Sleeve (2)</td>
<td>26317</td>
</tr>
</tbody>
</table>

*Assembly includes parts listed below:

- Air Cylinder Assembly 15733
- Air Cylinder 15521
- Tubing Assembly 15529
- Copper Tubing, 1/8 in. 15525
- Male Elbow 15523
- Male Connector 15522
- Machine Screw (2) 15421
- Hex Nut (2) 15527
- Lockwasher (2) 4141
- Visual Inspection Seal (2) 197
MECHANICAL GAS VALVE REQUIREMENTS (Continued)
All valves above are UL listed and approved. They may be mounted in any position. Pipe threads are type NPT. Ambient operating temperature range of all valves is 32 °F to 120 °F (0 °C to 49 °C). The valves are not weatherproof and must be located indoors in areas approved by the "authority having jurisdiction."

ELECTRICAL GAS VALVE REQUIREMENTS
A UL Listed electrically-operated gas shut-off valve can be attached to the R-102 system to provide an electrical means of shutting off the gas line at a predetermined point. If an electric gas shut-off valve is used in the system it must be attached with both an electric (snap-action) switch and a manual reset relay. For more information on the types of electric (snap-action) switches, refer to the Electrical Switch, Field Installation section. The manual reset relay is reviewed in this section.

All electrical connections should be performed by a QUALIFIED ELECTRICIAN and in accordance with authority having jurisdiction.

The following is a brief explanation of how the R-102 system operates with an Electric Gas Shut-off Valve attached:

With the regulated release cocked in the ready condition, the normally closed contacts in the snap-action switch allow current to flow to the manual reset relay. With the relay coil energized, normally open contacts in the reset relay close, allowing the solenoid in the gas valve to be energized.

Once the R-102 system is activated, the normally closed contacts in the snap-action switch will open, de-energizing the reset relay. This will, in turn, open the contacts in the relay which will cause the gas valve to become de-energized and close.

The system must be re-armed and the "push to reset" button on the reset relay must be operated to reopen the gas valve.

It is important to note that a power failure or an electrical power interruption will cause the gas valve to close even though the system was not fired.

In either case, whether in a fired condition or when a power failure has occurred, the manual reset relay and electric gas shut-off valve must be reset to resume a normal operating condition. For resetting, refer to the “Recharge and Resetting Procedures” section in this manual.

Approvals
ANSUL gas valves listed in this section are UL listed and approved for 110 VAC. If more information is required, refer to the Gas and Oil Equipment List of Underwriters Laboratories, Inc. under “Electrically Operated Valves Guide No. 440 A5” or consult Ansul Incorporated, Marinette, Wisconsin 54143-2542.

If other gas valves are used, they shall be “UL listed electrically-operated safety valves for natural or LP gas as required, of appropriate pressure and temperature rating, 110 VAC/60 Hz.” The information on temperature and type of gas that the valves are suitable for may be found in the Gas and Oil Equipment List of Underwriters Laboratories, Inc. under “Electrically Operated Valves Guide No. 440 A5.”

The electrically operated gas valve must be of the type that needs to be energized to remain open.

Parts that may be used for installation of a 110 VAC Gas Shut-off Valve are:

<table>
<thead>
<tr>
<th>Description</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric Solenoid Valve, 3/4 in. NPT*</td>
<td>13707</td>
</tr>
<tr>
<td>Electric Solenoid Valve, 1 in. NPT*</td>
<td>13708</td>
</tr>
<tr>
<td>Electric Solenoid Valve, 1 1/2 in. NPT*</td>
<td>13709</td>
</tr>
<tr>
<td>Electric Solenoid Valve, 2 in. NPT*</td>
<td>13710</td>
</tr>
<tr>
<td>Electric Solenoid Valve, 3 in. NPT*</td>
<td>17643</td>
</tr>
<tr>
<td>Manual Reset Relay (110 VAC)</td>
<td>14702</td>
</tr>
</tbody>
</table>

*Valves are normally closed when de-energized.

ALARM INITIATING SWITCH REQUIREMENTS
The Alarm Initiating Switch can be field mounted within the ANSUL AUTOMAN release. The switch must be used to close a supervised alarm circuit to the building main fire alarm panel when the ANSUL AUTOMAN release actuates. This action will signal the fire alarm panel that there was a system actuation in the kitchen area. The switch kit contains all necessary mounting components along with a mounting instruction sheet. See Page 5-25 for wiring information.

The switch is rated 50 mA, 28VDC.

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>428311</td>
<td>Alarm Initiating Switch Kit</td>
</tr>
</tbody>
</table>

ELECTRICAL SWITCH REQUIREMENTS
The electric (snap-action) switches for the R-102 system are specially designed to fit the regulated release assembly. The switches are intended for use with electric gas valves, alarms, contactors, lights, contractor supplied electric power shut-off devices, and other electrical devices that are designed to shut off or turn on when the fire suppression system is actuated. (See Figures 104 through 106 for reference.)

Contractors shall supply “UL listed, enclosed industrial control equipment or magnetic switch having a rating matching that of the cooking appliance, coil 110 VAC/60 Hz or 24 VAC/60 Hz.”

All electrical connections should be performed by a QUALIFIED ELECTRICIAN and in accordance with authority having jurisdiction.

Electric (Snap-Action) Switches that may be field installed are:

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>423878</td>
<td>One Switch Kit</td>
</tr>
<tr>
<td>423879</td>
<td>Two Switch Kit</td>
</tr>
<tr>
<td>423880</td>
<td>Three Switch Kit</td>
</tr>
<tr>
<td>423881</td>
<td>Four Switch Kit</td>
</tr>
</tbody>
</table>

Each switch has a set of single-pole, double throw contacts rated at 21 amp, 1 HP, 125, 250, 277 VAC or 2 HP, 250, 277 VAC.

Note: A relay must be supplied by others if the equipment load exceeds the rated capacity of the switch.

Electrical wiring and equipment shall be installed in accordance with NFPA 70 (National Electrical Code) or the requirements of the authority having jurisdiction.

If a fire alarm system is provided, the fire extinguishing system shall be connected to the alarm system in accordance with the requirements of NFPA 72, National Fire Alarm Code, so that the actuation of the extinguishing system will sound the fire alarm as well as provide the extinguishing function of the system.

If supervision of the electrical detection, electrical actuation or electrical power supply circuit is provided, it shall give prompt audible or visual indication of trouble and shall be distinctive from alarms or indicators indicating operation or hazardous conditions as specified in NFPA 17A.
ELECTRICAL SWITCH REQUIREMENTS (Continued)

Electric (110 VAC/60 Hz) Gas Shut-off Valve

INSTALLATION OVERVIEW

WIRING SCHEMATIC

WIRING SCHEMATIC – RELAY PART NO. 426151

NOTE:
1. ___ ___ ___ DENOTES FIELD INSTALLATION.
2. ___ ___ ___ DENOTES FACTORY INSTALLATION.
3. CONTRACTORS: "UL LISTED ENCLOSED INDUSTRIAL CONTROL EQUIPMENT OR MAGNETIC SWITCH HAVING A RATING MATCHING THAT OF THE COOKING APPLIANCE COIL, 110V/60HZ."
4. DO NOT USE BLACK WIRE ON SNAP-ACTION SWITCH IN NORMAL INSTALLATION. BLACK WIRE TO BE USED ONLY FOR EXTRANEOUS ALARM, LIGHT CIRCUITS, ETC.
ELECTRICAL SWITCH REQUIREMENTS (Continued)
Electric (110 VAC/60 Hz) Application with Customer Supplied Contactor and Heating Element Load

INSTALLATION OVERVIEW

WIRING SCHEMATIC

POWER SOURCE
ELECTRIC SNAP-ACTION SWITCH
JUNCTION BOX (NOT SUPPLIED BY ANSUL)
MANUAL RESET RELAY
CONTACTOR (CUSTOMER SUPPLIED)
MANUAL RESET SWITCH (CUSTOMER SUPPLIED)
POWER ON-OFF SWITCH (CUSTOMER SUPPLIED)

WIRING SCHEMATIC – RELAY PART NO. 426151

ANSUL SNAP-ACTION SWITCH
(SWITCH CONTACTS SHOWN WITH ANSUL AUTOMAN IN THE COCKED POSITION)

NOTE:
1. ___________ DENOTES FIELD INSTALLATION.
2. __ __ __ __ __ DENOTES FACTORY INSTALLATION.
3. GAS VALVES: "UL LISTED ELECTRICALLY-OPERATED SAFETY VALVE FOR NATURAL, OR LP GAS AS NEEDED OF APPROPRIATE PRESSURE AND TEMPERATURE RATING, 110V/60 HZ" OR ANSUL GAS VALVES, PART NUMBERS 13707, 13708, 13709, 13710, AND 17643.
4. DO NOT USE BLACK WIRE ON SNAP-ACTION SWITCH IN NORMAL INSTALLATION. BLACK WIRE TO BE USED ONLY FOR EXTRANEOUS ALARM, LIGHT CIRCUITS, ETC.
ELECTRICAL SWITCH REQUIREMENTS (Continued)

Electric (110 VAC/60 Hz) Application with Customer Supplied Contactor and Heating Element Load, and Power Supply Switch

INSTALLATION OVERVIEW

**NOTE:**
1. ______________ DENOTES FIELD INSTALLATION.
2. __ __ __ __ __ DENOTES FACTORY INSTALLATION.
3. CONTRACTORS: "UL LISTED ENCLOSED INDUSTRIAL CONTROL EQUIPMENT OR MAGNETIC SWITCH HAVING A RATING MATCHING THAT OF THE COOKING APPLIANCE COIL, 110V/60HZ."
4. DO NOT USE BLACK WIRE ON SNAP-ACTION SWITCH IN NORMAL INSTALLATION. BLACK WIRE TO BE USED ONLY FOR EXTRANEOUS ALARM, LIGHT CIRCUITS, ETC.

**FIGURE 106**

**WIRING SCHEMATIC**

**WIRING SCHEMATIC – RELAY PART NO. 426151**

**NOTE:**
1. ______________ DENOTES FIELD INSTALLATION.
2. __ __ __ __ __ DENOTES FACTORY INSTALLATION.
3. CONTRACTORS: "UL LISTED ENCLOSED INDUSTRIAL CONTROL EQUIPMENT OR MAGNETIC SWITCH HAVING A RATING MATCHING THAT OF THE COOKING APPLIANCE COIL, 110V/60HZ."
4. DO NOT USE BLACK WIRE ON SNAP-ACTION SWITCH IN NORMAL INSTALLATION. BLACK WIRE TO BE USED ONLY FOR EXTRANEOUS ALARM, LIGHT CIRCUITS, ETC.
INSTALLATION INSTRUCTIONS

The installation information listed in this section deals with the limitations and parameters of this pre-engineered system. Those individuals responsible for the installation of the R-102 system must be trained and hold a current ANSUL certificate in an R-102 training program.

Before attempting any installation, the entire system design must have been determined including: Nozzle Placement, Tank Quantity, Actuation and Expellant Gas Piping, Distribution Piping, and Detection System Requirements and an installation sketch should be completed.

MOUNTING THE COMPONENTS

For successful system performance, the regulated release assembly, regulated actuator assembly(ies), and tank-enclosure(s) or tank-bracket assembly(ies) used must be located in areas where the air temperature will not fall below 32 °F (0 °C) or exceed 130 °F (54 °C). The R-102 system is limited to interior applications only. Also, the components must be arranged to conform to the actuation and expellant gas line, and the distribution piping guidelines noted in “System Design.”

1. **CAUTION**

   Use only an ANSUL AUTOMAN Regulated Release assembly or OEM Release/Bracket Assembly. The regulator in this assembly is specifically designed to allow a regulated flow of expellant gas into the agent tank(s). Absence of this regulator could cause the tank(s) to rupture or create an improper system discharge.

Mount the regulated release assembly, OEM Release Assembly, and each regulated actuator assembly required by completing the following steps: See Figures 1, 2, and 3.

a. Select a rigid surface for mounting the enclosure. The mounting locations must allow the regulated release assembly and the regulated actuator assembly(ies) to be within the limitation of the actuation and expellant gas line lengths and must be able to support the weight of the assembly(ies). When the OEM Release Assembly is mounted inside a cabinet, clearances shall be provided for unrestricted movement of the release assembly components within the closed cabinet.

b. Detach cover from the enclosure. Remove agent tank from enclosure and the expellant gas line hose from the tank/adaptor assembly.

c. Secure enclosure box to selected mounting location using the four mounting holes. Use appropriate type of fasteners depending on the mounting surface.

d. When mounting a 6-gallon manifolded system (or a 6-gallon individual piped system) it is critical that each mounting box is located as shown in Figure 3a. There must be a 5/16 in. space between each box. Less than 5/16 in. will cause interference with the covers, and more than a 5/16 in. will cause a gap between the two hose grommets which will expose the hose to possible tampering or damage.

Remove the 7/8 in. knockout in the left side of the ANSUL AUTOMAN release box and remove the 1 in. knockout in the right side of the tank-enclosure box. Install grommets in each (use ANSUL hose/grommet package, Part No. 418511). Remove 1/4 in. plug from back side of R-102 regular and install fixed end of secondary expellant gas hose (included in hose/grommet package, Part No. 418511) in 1/4 in. regulator outlet and wrench tighten.

If not already done, mount both boxes to a rigid surface using appropriate fasteners.

Fill tanks per instructions listed in Steps 3 and 4 on Page 5-3.

Next, route hose through grommets and wrench tighten into 1/4 in. inlet of the adaptor on the tank in the tank/enclosure assembly. Also install hose to tank adaptor in regulated release and wrench tighten. See Figure 96 in “Design Section” for details of hose routing.
2. Mount each tank-enclosure or tank-bracket assembly by completing the following steps:
   a. Select a rigid, vertical surface for mounting the enclosure or bracket. (Keep in mind that the 3 gallon tank is taller than the bracket. Allow sufficient space for convenient piping and removal.)
   b. Remove tank from enclosure or bracket, and secure enclosure or bracket to the mounting location using the four mounting holes. Use appropriate type of fasteners depending on the mounting surface.

CAUTION

Do not install cartridge at this time or system may be actuated.
3. Fill each agent tank by completing the following steps:

   a. Remove tank adaptor/tube assembly from tank fill opening. Visually inspect tank adaptor to determine bursting disc is in place and that silver side is away from tank. See Figure 5.

   b. Place plastic funnel in fill opening and fill tank with 1.5 (5.8 L) or 3.0 (11.6 L) gallons of only ANSULEX Low pH Liquid Fire Suppressant. See Figure 6 for detailed filling tolerances. Note: Use a funnel with a screen to stop any foreign material from entering the tank. See Figure 6.

   c. Reinstall adaptor/tube assembly to tank by tightening until metal to metal contact is achieved between bottom of adaptor and tank collar.

4. Place each tank into its enclosure or bracket.
INSTALLING THE ACTUATION AND EXPELLANT GAS LINE

Before installing any actuation or expellant gas line, the piping design must be determined; and the regulated release assembly, each regulated actuator assembly and each tank-bracket assembly should be securely mounted.

General Piping Requirements

1. Use only 1/4 in. Schedule 40 black iron, hot-dipped galvanized, chrome-plated, or stainless steel pipe and fittings.

2. Before assembling the pipe and fittings, make certain all ends are carefully reamed and blown clear of chips and scale. Inside of pipe and fittings must be free of oil and dirt.

3. The piping and fitting connections must be sealed with pipe tape. When applying pipe tape, start at the second male thread and wrap the tape (two turns maximum) clockwise around the threads, away from the pipe opening.

NOTICE

Do not allow tape to overlap the pipe opening, as this could cause possible blockage of the gas pressure.

Thread sealant or compound must not be used.

4. When connecting actuation or expellant gas line piping, install a 1/4 in. union near the tank inlet for easy disassembly later.

Actuation Gas Line

Install actuation gas line from the regulated release mechanism high pressure side outlet (side opposite regulated outlet) through the appropriate knockout in the enclosure by completing the following steps:

1. Remove the 1/8 in. plug from high pressure side outlet. Install the appropriate fitting for additional equipment attachment as required. A 1/4 x 1/8 in. reducing fitting is required to connect the 1/4 in. actuation line. See Figure 7.
INSTALLING THE ACTUATION AND EXPPELLANT GAS LINE
(Continued)

Actuation Gas Line (Continued)

2. Run piping up through the regulated release assembly enclosure knockout to the inlet on top of each regulated actuator assembly used within the system.

3. The total combined length of the actuation gas line from the regulated release assembly to all regulated actuator assemblies must not exceed 20 ft. (6 m) when using an LT-20-R nitrogen cartridge, an LT-30-R nitrogen cartridge, a 101-10 CO₂ cartridge, or a 101-20 CO₂ cartridge. See Figure 8.

4. If an expellant gas line is connected to the regulated release assembly along with an actuation gas line, the total combined length of the actuation and expellant gas line must not exceed 30 ft. (9 m). See Figure 9.

5. A combined total of nine fittings may be used in these lines, eight 90° elbows and one tee. Two 45° elbows equal one 90° elbow.
INSTALLING THE ACTUATION AND EXPELLENT GAS LINE

(Continued)

Expellant Gas Line From The Regulated Release Assembly

Install expellant gas line from the regulated release assembly regulator in the enclosure by completing the following steps:

1. The regulated release assembly is shipped with a factory-installed regulator. The regulator has two 1/4 in. outlets, one at the back and one at the bottom. The bottom outlet connects the expellant gas hose to the agent tank which is mounted inside the enclosure. The back outlet is sealed with a 1/4 in. plug.

2. Connect expellant gas hose to the agent tank mounted inside the enclosure. If a pressure switch is required, a 1/4 in. x 1/8 in. reducing fitting will be required for connection between the back regulator outlet and the pressure switch. See Figure 7.

DOUBLE AND MULTIPLE TANK SYSTEMS:

If the expellant gas piping is required because an additional tank-enclosure or tank-bracket assembly is being installed, the plug installed in the back outlet must be removed. (See Figure 6 for proper connections to the regulator.)

3. Pipe the 1/4 in. expellant gas line from the regulator back outlet through one of the knockouts provided in the enclosure. The total length of the expellant gas line from the regulated release assembly must not exceed 30 ft. (9 m) when using a “double-tank” nitrogen cartridge or a 101-30 CO₂ cartridge. See Figure 10.

4. If an actuation gas line is connected to the regulated release assembly along with an expellant gas line, the total combined length of the gas lines must not exceed 30 ft. (9 m) when using a “double-tank” nitrogen cartridge or a 101-30 CO₂ cartridge. See Figure 9.

5. A combined total of nine fittings may be used in these lines, eight 90° elbows and one tee. Two 45° elbows equal one 90° elbow.

Expellant Gas Line From The Regulated Actuator Assembly

Install expellant gas piping from the regulated actuator assembly regulator through the appropriate knockout in the enclosure by completing the following steps:

1. The regulated actuator is shipped with a factory-installed regulator. The regulator has two 1/4 in. outlets 135° from each other. One outlet is sealed by a 1/4 in. plug and the other contains the expellant gas hose for the agent tank which will be mounted within the enclosure. Connect expellant gas hose to the agent tank that is mounted inside the enclosure. See Figure 11.

2. Remove the 1/4 in. pipe plug from the regulator side outlet and pipe the 1/4 in. expellant gas line from the regulator through the knockout provided in the enclosure to a tank-enclosure or tank-bracket assembly. A maximum of one tank-enclosure or tank-bracket assembly is allowed per regulated actuator assembly. The maximum length of the expellant gas line from the regulated actuator to the tank-bracket assembly must not exceed 30 ft. (9 m). See Figure 11.

3. A total of nine fittings may be used in these lines, eight 90° elbows and one tee. Two 45° elbows equal one 90° elbow.
INSTALLING THE ACTUATION AND EXPELLENT GAS LINE
(Continued)

- Actuation Gas Line From Remote Release(s) to Regulated Actuators
  Install actuation gas piping from the remote release(s) to the regulated actuators by completing the following:

  1. Pipe the 1/4 in. actuation gas line from the 1/4 in. outlet in the remote release receiver, through the knockout provided in the top of the release enclosure, to each regulated actuator assembly.

  The maximum length of the actuation gas line from the remote release to all regulated actuators must not exceed 100 ft. (30.5). See Figure 12. Note: Stainless steel hose and fittings can be used. See Component Section for detailed information.

  2. A maximum of nine tees and twenty elbows are allowed in the actuation piping. Two 45° elbows equal one 90° elbow. See Figure 12.

  3. A safety relief valve (Part No. 15677) must be installed in the actuation piping. See Figure 12.

- Actuation Gas Line – 10 to 15* Tanks Maximum – Using 1/4 in. Stainless Steel Hose
  *15 tanks maximum reflects the utilization of 3 tank regulated actuators
  1. Maximum hose length cannot exceed 17.5 ft. (5.3 m).
  2. Maximum of 5 regulated actuators allowed.
  3. Actuated with Remote Release (Part No. 433485) or Regulated Release Assembly (Part No. 429853).
INSTALLING THE DISTRIBUTION PIPING

Before the following procedures can be completed, the piping design must already be determined; and the actuation and expellant gas lines from the regulated release, each regulated actuator, and each tank-enclosure or tank-bracket assembly should already be installed.

These installation instructions are identical for single, double, and multiple-tank systems except for the quantity of tanks and hazard areas to be covered.

General Piping Requirements

1. Use Schedule 40 black iron, chrome-plated, or stainless steel pipe and fittings.

NOTICE
Do not use hot-dipped galvanized iron pipe or fittings in the agent distribution piping.

2. Before assembling the pipe and fittings, make certain all ends are carefully reamed and blown clear of chips and scale. Inside of pipe and fittings must be free of oil and dirt.

3. The distribution piping and fitting connections, located in or above the hood or the protected area, must be sealed with pipe tape. When applying pipe tape, start at the second male thread and wrap the tape (two turns maximum) clockwise around the threads, away from the pipe opening.

NOTICE
Do not allow tape to overlap the pipe opening as the pipe and nozzles could become plugged.
Thread sealant or compound must not be used as it could plug the nozzles.

4. Distribution piping may be run independently or two agent tanks may be manifolded together and run to the predetermined hazard area. Only agent tanks expelled from the same cartridge may be manifolded.

NOTICE
Closely follow the piping requirements for each size system, as detailed in the “System Design” section, when installing distribution piping.

5. Branchline tees can be used to create more than one branch and can be installed as a thru tee, side outlet tee or bull tee.

Pipe Hanger Recommended Guidelines

1. Space hangers as follows:

<table>
<thead>
<tr>
<th>Pipe Size</th>
<th>Maximum Recommended Distance Between Hangers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/8 in.</td>
<td>5 ft. (1.5 m)</td>
</tr>
</tbody>
</table>

2. Hangers should be placed between elbows when the distance is greater than 2 ft. (0.6 m).

Piping Installation

1. Starting at the tank, pipe directly from the union located on the tank adaptor. A reducing fitting may be necessary to conform to the distribution piping.

2. Based on the piping sketch developed in the “System Design” section of this manual, install the supply line and position the tees at points where branch lines must be installed. See Figure 13.

3. Run all branch lines to the hazard area and connect each nozzle. (Make certain all fittings are tight and all piping is securely bracketed.) The 1WS and 1NS nozzles can be aimed by slipping a 3/8 in. Schedule 40 pipe over the tip, moving the tip to the correct aiming point, and then wrench tightening the retaining ring.

4. All threaded connections located in the protected area, must be sealed with pipe tape. Tape should be applied to male threads only. Make certain tape does not extend over the end of the thread, as this could cause possible blockage of the agent distribution.

5. Before installing blow-off caps on nozzles, apply a small amount of Dow Corning No. 111 silicone grease across the opening in the nozzle tip and also a small amount coating the exterior of the blow-off cap. DO NOT FORCE SILICONE GREASE INTO NOZZLE TIP OPENING OR FILL CAP WITH GREASE.

NOTICE
When using a metal blow-off cap, make certain the spring clip rotates freely on the metal cap.

6. When a nozzle utilizes a metal blow-off cap, the nozzle tip must be coated with Silicone 111 grease before the cap is installed. The grease must be wiped across the tip and around the tip so that a rim of grease will be seen once the nozzle cap is in place. also, apply grease to the outside of the cap including application of the grease between the cap clips and the cap.

7. Make certain a blow-off cap is in place over each nozzle tip. These blow-off caps are designed to keep grease from building-up on the nozzle orifice and inhibiting the agent flow. See Figure 14.
INSTALLING THE DETECTION SYSTEM

Before the following procedures can be completed, the detection design must already be completed. These installation instructions are identical for single, double, and multiple-tank systems except for the number of hazard areas to be covered.

**NOTICE**
Inform customer that fusible links should not be exposed to ammonia-based chemical cleaners or steam.

1. Based on the requirements listed in the “System Design” section, mount the detectors in their predetermined locations.

2. Run 1/2 in. conduit from the regulated release mechanism trip hammer assembly knockout hole to locations selected for mounting the detectors.

**Note:** Before assembling the conduit and fittings, make certain all ends are carefully reamed and blown clear of chips and scale. Inside of pipe and fittings must be free of oil and dirt.

When changing the direction of conduit, use only ANSUL pulley elbows, except, at the top of the regulated release, it is acceptable to use the “Conduit Offset Assembly” (Part No. 79825).

ANSUL offers three styles of detector bracket assemblies. Part No. 56837 and 56838 are the “clip-on” style series and terminal detector assemblies. These detector assemblies use a “clip-on” style linkage assembly and do not require the wire rope to be threaded through the linkage assembly while it is being fed through the detection system.

Part No. 15373 and 15375 are the “hinged” style series and terminal detector assemblies. These detector assemblies use a detector linkage assembly which requires the wire rope to be threaded through each linkage assembly while the rope is being fed through the detection system.

Part No. 417368 and 417369 are the “scissor” style series and terminal detector assemblies. These detector assemblies use a detector linkage assembly which does not require the wire rope to be threaded through the linkage assembly while it is being fed through the detection system.

**Installing “Clip-On” Style Linkage**

1. Secure the conduit to the detector bracket using the two 1/2 in. steel compression fittings on the series detector bracket or the single 1/2 in. steel compression fitting on the terminal detector bracket. See Figure 15.

2. For a terminal detector located in a duct or header opening, secure both sides of the detector bracket with conduit, as shown in Figure 16.

3. Starting at the regulated release assembly, feed the wire rope through the hole in the regulated release mechanism locking clamp, allowing the excess wire rope to hang down. (Do not tighten set screws in locking clamp at this time.) See Figure 17.

**NOTICE**
Do not use zinc die cast compression connectors on the detection conduit lines as these will not withstand the normally high temperatures experienced in the plenum area.
INSTALLING THE DETECTION SYSTEM (Continued)
Installing “Clip-On” Style Linkage (Continued)

4. From the regulated release assembly, run the stainless steel wire rope through the conduit, pulley elbows and detector brackets to the terminal detector.

**NOTICE**
If wire rope requires splicing, make certain splice is at least 12 in. (30.5 cm) away from any pulley elbow or conduit adaptor to avoid interference.

5. Feed the wire rope through the terminal detector bracket as shown in Figure 18 or as shown in Figure 19 if the terminal detector is mounted within a duct or header opening, and install the stop sleeve approximately 2 to 3 in. (5 to 8 cm) from the end of the wire rope. See Figure 20. Use the National Telephone Supply Company Nicopress Sleeve Tool (Stock No. 51-C-887) or equal to properly crimp the stop sleeve.

6. To give a constant tension on the wire rope during installation of the detector linkage, hang a vice grip or other weighted device on the excess stainless steel wire rope, leaving an adequate length of spare wire rope between the locking clamp and the weighted device.

**NOTICE**
When attaching the weighted device to the excess wire rope, allow approximately 3 in. (8 cm) of wire rope for each detector linkage for proper installation.

**Example:** If the system has six detectors, there should be approximately 18 in. (46 cm) of excess wire rope between the locking clamp and the weighted device, which will be utilized when the linkage is put in place.

7. Starting at the terminal detector, place the small tab of the detector linkage onto the wire rope. See Figure 21.

8. With the tab positioned on the wire rope, press and snap the detector linkage onto the wire rope. See Figure 22.
Installing “Clip-On” Style Linkage (Continued)

9. Place the tab of the other half of the detector linkage on the opposite side of the wire rope and press the linkage until it snaps onto the rope. See Figure 23.

FIGURE 23

NOTICE
The hook portions of the detector linkage should now face away from each other.

10. Next, rotate both halves of the detector linkage upside down, with the detector linkage groove over the wire rope. See Figure 24.

FIGURE 24

11. After fitting the pivot point of the two detector linkage halves together, squeeze the two halves and place the correctly rated ANSUL fusible link over both detector hooks. See Figure 25.

FIGURE 25

12. Position the assembled linkage onto the detector bracket. See Figure 26. (For optimum detection, make certain the solder joint is in the down position.)

FIGURE 26

NOTICE
When positioning the linkage in the bracket, it is recommended to locate the linkage slightly off center, toward the terminal detector side.

13. Install the linkage and the correct ANSUL fusible link in the remainder of the detector brackets.

14. Insert cocking lever (Part No. 14995) on left side of the regulated release mechanism, with the movable flange resting securely against the corner of the cartridge receiver and spring housing, and with the notched lever portion engaging the cocking pin on both sides of the regulated release mechanism. See Figure 27.

FIGURE 27
15. With a downward motion of the cocking lever, raise cocking pin until the trip lever indented surface moves underneath the pin and locks the pin in the “UP” position. See Figure 28.

16. Remove cocking lever and insert lock bar (Part No. 14985) on left side of the cable lever, over the two shouldered projecting stud extensions, and slide bar forward into locking position. (The regulated release mechanism cannot be actuated, nor can enclosure cover be replaced until the lock bar is removed.) See Figure 29.

17. Make certain tension lever is in the “UP” position. See Figure 30.

18. Verify each detector linkage assembly, with correct ANSUL fusible link, is in the detector bracket, located slightly toward the terminal detector side.

**NOTICE**
Due to the close adjustment between the trip hammer and cable lever assemblies, use only the particular fusible link(s) selected for installation in each detector, including terminal detector, to ensure correct adjustment when performing Steps 19 and 20.

19. Raise trip hammer 3/8 in. to 1/2 in. (9.5 to 12.7 mm), pull all slack out of wire rope, and tighten set screws on locking clamp.
INSTALLING THE DETECTION SYSTEM (Continued)

Installing “Clip-On” Style Linkage (Continued)

20. Lower tension lever to “DOWN” position and inspect the base of the wire rope clamping device to make certain that there is a minimum of 1/4 in. (6.4 mm) and a maximum of 3/8 in. (9.5 mm) clearance between the base of the trip hammer assembly and the cable lever assembly. See Figure 31. (If clearance is not between 1/4 in. (6.4 mm) or 3/8 in. (9.5 mm), raise tension lever, loosen set screws on locking clamp and repeat Steps 19 and 20.)


22. When testing has been completed, cut off excess wire rope in the regulated release assembly, leaving approximately 2 in. (5.1 cm) of wire rope below the clamping device.

“Scissor” Style Linkage Installation

1. Secure the conduit to the detector bracket using the two 1/2 in. steel compression fittings on the series detector bracket or the single 1/2 in. steel compression fitting on the terminal detector bracket. See Figure 32.

2. For a terminal detector located in a duct or header opening, secure both sides of the detector bracket with conduit, as shown in Figure 33.

3. Starting at the release assembly, feed the wire rope through the hole in the release mechanism locking clamp, allowing the excess wire rope to hang down. (Do not tighten set screws in locking clamp at this time.) See Figure 34.

NOTICE

Do not use zinc die cast compression connectors on the detection conduit lines as these will not withstand the normally high temperatures experienced in the plenum area.

CAUTION

Do not install cartridge at this time as an accidental actuation could cause system discharge.

FIGURE 31

FIGURE 32

FIGURE 33

FIGURE 34
INSTALLING THE DETECTION SYSTEM (Continued)

“Scissor” Style Linkage Installation (Continued)

4. From the release assembly, run the stainless steel wire rope through the conduit, pulley elbows and detector brackets to the terminal detector.

**NOTICE**

If wire rope requires splicing, make certain splice is at least 12 in. (30.5 cm) away from any pulley elbow or conduit adaptor to avoid interference.

5. Feed the wire rope through the terminal detector bracket as shown in Figure 35 or as shown in Figure 36 if the terminal detector is mounted within a duct or header opening, and install the stop sleeve approximately 2 to 3 in. (5 to 8 cm) from the end of the wire rope. See Figure 37. Use the National Telephone Supply Company Nicopress Sleeve Tool (Stock No. 51-C-887) or equal to properly crimp the stop sleeve.

6. To give a constant tension on the wire rope during installation of the detector linkage, hang a vice grip or other weighted device on the excess stainless steel wire rope, leaving an adequate length of spare wire rope between the locking clamp and the weighted device.

**NOTICE**

When attaching the weighted device to the excess wire rope, allow approximately 3 in. (8 cm) of wire rope for each detector linkage for proper installation.

Example: If the system has six detectors, there should be approximately 18 in. (46 cm) of excess wire rope between the locking clamp and the weighted device, which will be utilized when the linkage is put in place.

7. Install detector scissor assembly as shown in Figure 38. Note that the ANSUL AUTOMAN release is located on the left side of the detector bracket. Slightly crimp the two assembly “boot-hooks” over the cable with pliers so the cable is captured under each hook but the whole assembly can move from side to side. Center the assembly in the detector bracket.

8. Hook the fusible link on the ANSUL AUTOMAN release side of the hook assembly, then pull the fusible link to the opposite side and complete the hookup as shown in Figures 39 and 40. The top of the hook assembly must be inside the bracket stiffeners. The hook assembly with the ANSUL fusible link in place must be located toward the terminal detector side of the bracket.
INSTALLING THE DETECTION SYSTEM (Continued)

“Scissor” Style Linkage Installation (Continued)

9. Install the linkage and the correct ANSUL approved fusible link in the remainder of the detector brackets. Make certain all detector linkages are positioned against either the front or back upper lip of the formed detector bracket. See Figure 40a.

10. Insert cocking lever (Part No. 14995) on left side of the release mechanism, with the movable flange resting securely against the corner of the cartridge receiver and spring housing, and with the notched lever portion engaging the cocking pin on both sides of the release mechanism. See Figure 41.

11. With a downward motion of the cocking lever, raise cocking pin until the trip lever indented surface moves underneath the pin and locks the pin in the up position. See Figure 42.

12. Remove cocking lever and insert lock bar (Part No. 14985) on left side of the cable lever, over the two shouldered projecting stud extensions, and slide bar forward into locking position. (The release mechanism cannot be actuated, nor can enclosure cover be replaced until the lock bar is removed.) See Figure 43.

13. Make certain tension lever is in the “UP” position. See Figure 44.
INSTALLING THE DETECTION SYSTEM (Continued)

“Scissor” Style Linkage Installation (Continued)

14. Verify each detector linkage assembly, with correct fusible link, is in the detector bracket, located fully toward the terminal detector side.

**NOTICE**

Due to the close adjustment between the trip hammer and cable lever assemblies, use only the particular fusible link(s) selected for installation in each detector, including terminal detector, to ensure correct adjustment when performing Steps 15 and 16.

15. Raise trip hammer 3/8 in. to 1/2 in. (9.5 to 12.7 mm), pull all slack out of wire rope, and tighten set screws on locking clamp.

16. Lower tension lever to “DOWN” position and inspect the base of the wire rope clamping device to make certain that there is a minimum of 1/4 in. (6.4 mm) and a maximum of 3/8 in. (9.5 mm) clearance between the base of the trip hammer assembly and the cable lever assembly. See Figure 45. (If clearance is not between 1/4 in. (6.4 mm) or 3/8 in. (9.5 mm), raise tension lever, loosen set screws on locking clamp and repeat Steps 15 and 16.)

**CAUTION**

Make certain the hook assembly with the ANSUL fusible link in place is located toward the terminal detector side of each bracket. Failure to do so may restrict travel of detection line, causing system to malfunction.

17. Test detection system in accordance with the Testing and Placing in Service Section, Page 7-1 – 7-3, of this manual.

18. When testing has been completed, cut off excess wire rope in the regulated release assembly, leaving approximately 2 in. (5.1 cm) of wire rope below the clamping device.

Installing “Hinged” Style Linkage

1. Secure the conduit to the detector bracket using 1/2 in. steel compression fittings. Thread the compression fitting into the detector bracket and then secure by using the lock nut supplied with the fitting. See Figure 46.

2. Starting at the regulated release assembly, feed wire rope up through hole in regulated release mechanism locking clamp, allowing excess wire rope to hang down. (Do not tighten set screws in locking clamp at this time.) See Figure 47.

3. From the regulated release assembly, run the stainless steel wire rope through the conduit, pulley elbows and to the first detector.

4. Before continuing on past the detector bracket, feed the wire rope through the detector linkage assembly. See Figure 48.

5. Continue running the wire rope through the conduit and pulley elbows and feed it through each detector linkage assembly at each additional bracket.

6. At the terminal detector, feed wire rope through the terminal detector clamping device. Allow 2-3 in. (5-8 cm) of wire rope to extend beyond the clamping device and wrench tighten the set screws. See Figure 48.

7. To give a constant tension on the wire rope during positioning of the detector linkage(s), hang a vise grip or other weighted device on the excess stainless steel wire rope, leaving an adequate length of spare wire rope between the locking clamp and the weighted device.
INSTALLING THE DETECTION SYSTEM (Continued)

Installing “Hinged” Style Linkage (Continued)

NOTICE
When attaching the weighted device to the excess wire rope, allow approximately 3 in. (8 cm) of wire rope for each detector linkage for proper installation.

Example: If the system has six detectors, there should be approximately 18 in. (46 cm) of excess wire rope between the locking clamp and the weighted device, which will be utilized when the linkage is put in place.

8. Starting at the terminal detector, squeeze the linkage together and place the correctly rated ANSUL fusible link over both detector hooks. For optimum detection, make certain the solder joint is in the down position. Locate the linkage in the center of the detector bracket. See Figure 49.

9. Proceed to install the remainder of the ANSUL fusible links on the detector hooks and position the linkage in the center of each bracket.

10. Insert cocking lever (Part No. 14995) on left side of regulated release mechanism with the movable flange resting securely against the corner of cartridge receiver and spring housing, with the notched lever portion engaging the cocking pin on both sides of the regulated release. See Figure 50.

11. With a downward motion of the cocking lever, raise the cocking pin until trip hammer indented surface moves underneath the pin. See Figure 51.

12. Remove the cocking lever and insert lock bar (Part No. 14985) on left side of cable lever, over the two shouldered projecting stud extensions, and slide the bar forward into the locking position. (The regulated release mechanism cannot be actuated, nor can enclosure cover be replaced until the lock bar is removed.) See Figure 52.
INSTALLING THE DETECTION SYSTEM (Continued)
Installing “Hinged” Style Linkage (Continued)

13. Make certain tension lever is in the “UP” position. See Figure 53.

14. Verify each detector linkage assembly, with correct ANSUL fusible link, is approximately centered in the detector bracket.

**NOTICE**
Due to the close adjustment between the trip hammer and cable lever assemblies, use only the particular ANSUL fusible link(s) selected for the installation in each detector, including the terminal detector, to ensure correct adjustment when performing Steps 15 and 16.

15. Raise trip hammer 3/8 in. to 1/2 in. (9.5 to 12.7 mm), pull all slack out of wire rope, and tighten set screw on locking clamp.

16. Lower tension lever to “DOWN” position and inspect the base of wire rope clamping device to make certain that there is a minimum of 1/4 in. (6.4 mm) and a maximum of 3/8 in. (9.5 mm) clearance between the base of trip hammer assembly and cable lever assembly. See Figure 54. (If clearance is not between 1/4 in. (6.4 mm) or 3/8 in. (9.5 mm), raise tension lever, loosen set screws on locking clamp and repeat Steps 15 and 16.)


18. When all testing has been completed in the “Testing and Placing in Service” section, cut off excess wire rope in the regulated release assembly, leaving approximately 2 in. (5.1 cm) of wire rope below the clamping device.

**CAUTION**
Do not install cartridge or do not remove lock bar at this time as an accidental actuation could cause system discharge.

**CAUTION**
Make certain tension lever is in the “DOWN” position after completing all tests. Failure to put the tension lever in the “DOWN” position will cause the system to not operate properly.
INSTALLING REMOTE MANUAL PULL STATION

To install a remote manual pull station complete the following steps:

1. Make certain that regulated release assembly enclosure cover is detached and lock bar is properly inserted within the regulated release mechanism.

   **NOTICE**

   Failure to follow these instructions may lead to system actuation.

2. Verify that cartridge has been removed from regulated release assembly and that the regulated release assembly is in the cocked position.

   If regulated release assembly does not have lock bar inserted or cartridge removed, refer to the “Semi-Annual Maintenance,” Page 8-1, in “Maintenance Examination” section, and complete Steps 2 and 3 before completing the following installation steps.

3. Select a convenient location in the path of egress for mounting the pull station(s) to the wall. The pull station should be installed at a height of 42 in. to 48 in. (107 cm to 122 cm) in accordance with the authority having jurisdiction and the American Disabilities Act (ADA) requirements.

   The total length of the wire rope used for each manual pull station within a system must not exceed 150 ft. (46 m).

   The maximum number of pulley elbows that may be used per each manual pull station is 20 of Part No. 423250 or 415670. A maximum of two (2) manual pull stations can be connected to each AUTOMAN Release.

4. If junction box(es) is used, fasten a 4 in. (10 cm) junction box to wall or in wall where pull station is to be mounted, with mounting screws positioned so that when pull station cover is positioned in place, the printing will appear right side up and readable.

   **ALTERNATE METHOD OF CONNECTION:**

   a. Thread 3/4 x 1/2 in. reducing coupling to bushing on back of each cover assembly. See Figure 54a.

   b. Mount pull station cover(s) directly to wall at selected location so that printing is right side up and readable.

5. Install and secure 1/2 in. conduit, pulley tee (if required), and pulley elbows from each pull station to regulated release assembly as necessary. See Figure 55 or 56.

   See Figure 56a for optional methods of installing wire rope when utilizing a pulley tee, Part No. 427929.
INSTALLING REMOTE MANUAL PULL STATION (Continued)

6. Feed wire rope from each pull station through conduit and each pulley elbow to cable lever located at regulated release assembly.

**NOTICE**
Make certain that wire rope rides on top and in center of pulley sheave. If the 50 ft. (15 m) wire rope has been spliced to accommodate a longer run, do not allow the spliced ends to be within 6 in. (152 cm) of any pulley elbow or conduit adaptor.

7. Fasten pull station assembly to each junction box (if junction box is used).

8. Slide oval crimp sleeve onto wire rope. Loop wire rope through cable lever guide holes and back through the oval crimp sleeve. See Figure 55.

9. Pull slack out of each wire rope and crimp sleeve. (Use the National Telephone Supply Company Nicopress Sleeve Tool Stock No. 51-C-887 or equal to properly crimp stop sleeve.) See Figure 55.

INSTALLING MECHANICAL GAS VALVE

**NOTICE**
Mechanical gas valves are designed for indoor installation only.

To install each Mechanical Gas Shut-off Valve complete the following steps. (All gas valve installation and testing shall be made in accordance with the authority having jurisdiction.)

**Note:** Mechanical gas valve air cylinder(s) can be installed in regulated release assemblies and also regulated actuator assemblies. Installation in either is the same.

1. Make certain that regulated release assembly enclosure cover is detached and lock bar is properly inserted in the regulated release mechanism.

**NOTICE**
Failure to follow these instructions may lead to system actuation.

2. Verify that cartridge has been removed from regulated release assembly and that the regulated release mechanism is in the cocked position.

If regulated release mechanism does not have lock bar inserted or cartridge removed, refer to the “Semi-Annual Maintenance,” Page 8-1, in “Maintenance Examination” section, and complete Steps 2 and 3 before completing the following installation steps.

3. Remove plug from cartridge receiver. See Figure 57.

4. Locate air cylinder and bracket assembly over the two 7/32 in. (.6 cm) holes on right side of the enclosure. Assemble with screws, lockwashers, and nuts. Wrench tighten. See Figure 58. Air cylinder(s) can also be mounted in the inverted position, allowing for direct exit out the knockout(s) in the bottom of the enclosure. See Figure 59.
INSTALLING MECHANICAL GAS VALVE (Continued)

Note: Two air cylinders are necessary only if the old style pulley tee, Part No. 15342, is utilized. If new style pulley tee, Part No. 427929, is utilized, only one air cylinder is required. Individual wire ropes can be run from each gas valve to a single air cylinder. See Figure 60.

5. To install second mechanical gas valve shut-off system, locate second air cylinder and bracket assembly adjacent to first assembly and over the two remaining 7/32 in. (.6 cm) holes provided on right side of the enclosure. Assemble second cylinder with screws, lockwashers, and nuts as required. Wrench tighten. See Figure 60.
INSTALLING MECHANICAL GAS VALVE (Continued)

6. Install the necessary 1/8 in. copper tubing and fittings for each air cylinder to the accessories piping arrangement on the regulated release mechanism. See Figures 58 and 60.

NOTICE
Do not kink 1/8 in. copper tubing or form a bend too close to a fitting. Secure each fitting without over tightening. Over tightening could result in pressure leakage or line separation at actuation.

7. Install mechanical gas valve to its selected location in gas line so that it ensures safe shut-off to all predetermined appliances being protected upon actuation of the system. Mechanical gas valves may be mounted in any convenient horizontal or vertical position. See Figure 61.

a. Use new pipe, properly reamed and cleaned of metal chips.

b. Make certain gas flow is in the same direction as arrow shown on gas valve. To avoid cracking the gas valve casting, do not overtighten pipe connections. If pipe tape, paste, spray, or similar lubricant is used, extra care should be taken to avoid overtightening. Apply lubricant to male threads only.

c. Wrench tighten pipe to gas valve. DO NOT USE GAS VALVE AS A LEVER WHEN INSTALLING OR VALVE DAMAGE MAY OCCUR. See Figure 61.

d. If strainer is utilized, attach strainer ahead of gas valve.

e. If necessary, install drip leg in gas line in accordance with the authority having jurisdiction.

f. The total length of wire rope allowed for each valve must not exceed 150 ft. (46 m).

g. The maximum number of pulley elbows allowed for each gas valve is 20.
INSTALLING MECHANICAL GAS VALVE (Continued)

8. Install 1/2 in. conduit, and pulley elbow(s) from the mechanical gas valve to regulated release assembly enclosure as necessary.

9. Beginning at the regulated release assembly, thread the end of the wire rope through hole provided in air cylinder rod. See Figure 58.

10. Feed end of wire rope through conduit and each pulley elbow.
Make certain that wire rope rides on top and in center of pulley sheave. If the 50 ft. (15 m) wire rope has been spliced to accommodate a longer run, do not allow the spliced ends to be within 12 in. (30 cm) of any pulley elbow or conduit adaptor.

11. Remove side cover on gas valve and thread end of wire rope through hole in cocking lever. Slide stop sleeve (Part No. 26317) on to wire rope and crimp. (Use the National Telephone Supply Company Nicopress Sleeve Tool Stock No. 51-C-887 or equal to properly crimp stop sleeve.) Make certain crimp is on top of trigger, with wire rope curled under lever. See Figure 62.

12. With the end of wire rope already threaded through hole in air cylinder rod, slide stop sleeve (Part No. 26317) onto wire rope and leave loose. Do not crimp stop sleeve at this time. See Figure 58.

13. Cock mechanical gas valve as shown in Figure 63. Note: A valve cocking tool is available. Order Part No. 416018.

14. Raise air cylinder rod “UP” to its maximum extended position. See Figure 58.

15. Manually pull wire rope to remove excess slack.

NOTICE
DO NOT ACTUATE THE MECHANICAL GAS VALVE. Each Mechanical Gas Valve System must have gas valve cocked and air cylinder rod extended “UP” to its maximum extension before completing next step.

16. Slide stop sleeve against air cylinder rod, make certain all slack is removed from wire, and crimp stop sleeve. See Figure 58.

17. Cut off any excess wire rope approximately 3/4 in. (2 cm) from end of stop sleeve.

18. Note: If utilizing a pulley tee to operate a single mechanical gas valve from two (2) ANSUL AUTOMAN releases, see Figure 64 for installation instructions. Maximum length of wire rope to each ANSUL AUTOMAN release must not exceed 150 ft. (45.7 m) and maximum number of elbows must not exceed 20.
INSTALLING ELECTRICAL GAS VALVES

NOTICE

Electric gas valves are designed for indoor installation only.

The following instructions and schematics illustrate methods of procedures for installing 110 VAC Electric Gas Shut-off Valves.

1. Make certain that regulated release assembly enclosure cover is detached and lock bar is properly inserted within the regulated release mechanism.

   **NOTICE**

   Failure to follow these instructions may lead to system actuation.

2. Verify that cartridge has been removed from regulated release assembly and that the regulated release mechanism is in the cocked position.

   If regulated release mechanism does not have lock bar inserted or cartridge removed, refer to the "Semi-Annual Maintenance," Page 8-1, in "Maintenance Examination" section, and complete Steps 2 and 3 before completing the following installation steps.

3. 

   **CAUTION**

   To reduce the risk of explosion due to leaking gas, make certain that the gas line is turned off before connecting the gas valve.

   Install each electric gas valve to its selected location in gas line so that it ensures safe shut-off to all predetermined appliances being protected upon actuation of the system. Refer to manufacturer’s instructions (if provided). See Figure 65.

   a. Use new pipe properly reamed and clean of metal chips.
   b. Install valve so that the actuator is above the horizontal pipe line with no more than a five degree (5°) lean either way.
   c. Make certain gas flow is in the same direction as arrow shown on gas valve.
   d. If strainer is utilized, attach strainer ahead of gas valve.
   e. If necessary, install drip leg in gas line in accordance with authority having jurisdiction.

4. Install and secure 1/2 in. conduit from each electric gas valve to manual reset relay enclosure.

5. Tag and connect electrical wiring to each electric gas valve. Then, feed wire through conduit to manual reset relay. Tape or place a wire nut on any unused wire leads in accordance with authority having jurisdiction. Refer to Figures in “Design” section for typical wiring diagrams.

6. 

   **CAUTION**

   Before working on any electrical wiring, make certain main power has been disconnected. Failure to disconnect main power could cause personal injury or death if contact is made with energized wires.

   Connect electrical wiring to manual reset relay along with any contactor, or contractor supplied devices needed. Refer to manufacturer’s instructions and proper figure listed for assistance.

7. Tape or place a wire nut on any unused wire leads in accordance with authority having jurisdiction.

8. Install and secure 1/2 in. conduit from the regulated release assembly enclosure to manual reset relay enclosure.

   If snap-action switches have not been attached, go to “Electric Switch” section and install them at this time by completing Steps 3 through 8.

9. Tag and connect electrical wiring to each electric (snap-action) switch. Then, feed wire through conduit to manual reset relay.

10. Connect wiring from each electric (snap-action) switch to manual reset relay terminals. Refer to manufacturer’s instructions (if provided) and proper figure for assistance.

11. Tape or place a wire nut on any unused wire leads in accordance with authority having jurisdiction.

12. Properly return electrical power to the system.
INSTALLING ELECTRICAL SWITCHES

The procedure for field installing an electric (snap-action) switch is as follows:

1. Make certain that regulated release assembly enclosure cover is detached with lock bar properly inserted within the regulated release mechanism.

   **NOTICE**
   Failure to follow these instructions may lead to system actuation.

2. Verify that cartridge has been removed from regulated release assembly and that the regulated release mechanism is in the cocked position. If regulated release mechanism does not have lock bar inserted or cartridge removed, refer to the “Semi-Annual Maintenance,” Page 8-1, in “Maintenance Examination” section, and complete Steps 2 and 3 before completing the following installation steps.

   If regulated release mechanism has a factory installed solenoid, it will also have a factory installed switch.

3. Press each wire assembly onto the 3-terminals located on the switch(s). Be sure that the connector is pressed tight against the switch. See Figure 66.

4. Install switch(es) to the mounting bracket using provided fasteners and tighten securely.

5. If more than one switch is being installed, it is necessary to attach the trip lever extension stud to the trip lever. See Figure 67. Using the provided fasteners, securely install the extension stud.

6. Raise switch actuating arm squarely over the cam surface of the trip lever. This will allow the trip lever, when actuated, to force the actuating arm “UP,” thus reversing the normal condition of the switch. See Figure 67.

   For multiple switch installations, make certain switch actuating arms are positioned on trip lever extension stud.

   Before proceeding with Step 7, test electric (snap-action) switches:

   a. Remove lock bar. With the ANSUL AUTOMAN in the cocked or ready position, press the lever of each switch up. If the switch is working properly there should be an audible click.

   b. With the ANSUL AUTOMAN in the fired position, press the lever of each switch up, there should be no audible click.

   When installing multiple switches, make certain all switches transfer when the release operates. If they do not, readjust their position.

   c. If an audible click is heard in the fired position several adjustments can be made. The trip lever extension pin can be rotated so the peak of one of the hex points is pointed up against the switch levers. Tighten it in that position. If this doesn’t resolve the problem, loosen the screws holding the switches, apply a small counterclockwise torque on the switches and retighten the screws. If necessary, a final adjustment can be made by removing the snap action switch and bending the lever slightly.

   d. After adjustments repeat steps a and b. Then, recock ANSUL AUTOMAN and install lock bar.

   ![Figure 67](image)

   **FIGURE 67**

   ▶ 7. The switch may now be connected to compatible components that are predetermined to shut off or turn on. Refer to component manufacturer’s instructions for proper wiring connections to compatible components.

   ▶ 8. Tape or place a wire nut on any unused wire leads in accordance with authority having jurisdiction.

   **NOTICE**
   Do not connect power source to any relay, contactor, or contractor supplied devices until all other electrical connections are made. Refer to proper section or manufacturer supplied instructions for recommended installation procedures for these devices.

   ▶ 9. Turn off power source and connect power line to any relay, contactor, or contractor supplied devices where used.
INSTALLING ALARM INITIATING SWITCH

The Alarm Initiating Switch Kit, Part No. 428311, consists of:

- Alarm Initiating Switch Assembly – Rated 50 mA 28VDC
- Spacer
- Mounting Screw with Nut (2)
- Extension Pin
- Extension Pin Nut
- Instruction Sheet

The Alarm Initiating Switch is mounted in the ANSUL AUTOMAN Release on the same mounting plate where the current snap-action switches are mounted. If the alarm initiating switch is used alone, the enclosed extension pin and pin nut are not needed.

When mounting the switch, the spacer must be installed first, between the ANSUL AUTOMAN mounting plate (or existing switches) and the alarm initiating switch.

See NFPA 72, “National Fire Alarm Code,” Initiating Devices section, for the correct method of wiring connection to the fire alarm panel.

After the switch is properly mounted, follow the steps listed in the installation section of the Design, Installation, Recharge, and Maintenance Manual for correct positioning of the switch lever on the ANSUL AUTOMAN cam surface.

FIGURE 68

FIGURE 69
WIRING 24 VDC REGULATED RELEASE ASSEMBLY
(ULC APPROVED ONLY)

Refer to the following notes and wiring diagram for instruction on wiring the 24 VDC regulated release assembly.

Notes:

1. To be connected to a nominal 12 VDC or 24 VDC releasing circuit. 
   Input power: 450 mA at 12 VDC or 750 mA at 24 VDC. 
   Solenoid on time: Approximately 50 milliseconds.

2. Polarization: Observe polarity when connected to a release circuit; Terminal 4 positive, Terminal 8 negative.

3. All interconnecting wiring must be 18 AWG minimum.

4. $S_1$ contact rating: 15A, 1/3 HP, 125 or 250 VAC resistive; 1/2A, 125 VDC; 1/4A, 250 VDC; 5A, 120 VAC inductive.

5. SOL$_1$ coil resistance: 28 OHMS +/- 10% at 77 °F (25 °C).

6. Install the in-line supervisory device SD$_x$ across terminals No. 4 and No. 5. Refer to the releasing panel installation instructions for supervisory device requirements. If an in-line supervisory device is not required, install jumper J$_2$ across terminals No. 4 and No. 5.

---

**FIGURE 70**

[Diagram of wiring connections]
After the system has been completely installed, and **BEFORE INSTALLING THE CARTRIDGE**, the system must be tested at the regulated release assembly.

**TESTING MANUAL PULL STATION**

To test each remote manual pull station, complete the following steps:

1. With the expellant gas cartridge removed, remove lock bar from regulated release assembly cable lever.
2. On metal stamped pull station, remove glass break rod from pull station by removing set screw on side of stud and slide glass break rod out. On molded plastic pull station, seal will be broken during test and must be replaced.
3. Pull ring handle on pull station. If the regulated release assembly is tripped easily, the remote manual pull station is properly installed.
   
   If the regulated release assembly does not trip, remove pulley tee (if provided) and each pulley elbow cover to make certain wire rope is resting on the pulley sheave. If this does not correct the problem, there is too much slack in the line and it must be retightened.

5. Recock regulated release assembly using cocking lever (Part No. 14995) and reinstall lock bar (Part No. 14985)
6. On metal stamped pull station, slide glass break rod through stud and ring handle. Tighten set screw into stud. On molded plastic pull station, replace seal.

**NOTICE**

If no other devices are being attached, proceed to Page 6-3, Step No. 1, and test the detection system.

**TESTING MECHANICAL GAS VALVES**

To test each mechanical gas shut-off valve complete the following steps:

1. **CAUTION**
   
   To reduce the risk of explosion due to leaking gas, before the gas line is turned on, make certain to extinguish any open flames and turn off all burners and any electrical or mechanical devices that are capable of igniting gas.
   
   Turn gas line on.

2. Manually push each air cylinder rod to full “DOWN” position. The gas valve should close. If mechanical gas valve does not trip, remove each pulley elbow cover to make certain wire rope is resting on each pulley elbow sheave. If this does not correct the problem there may be too much slack in the line and it should be retightened.
3. Test for gas leaks by painting connections with a soap solution. Bubbles indicate a gas leak. Tighten connections where leaks appear and repeat test again to make certain no other gas leaks exist.
4. If no gas leak is found, pull air cylinder rod to full “UP” position.
5. Recock mechanical gas valve.

6. Check burners for gaseous odor. **IF GASEOUS ODOR EXISTS, MANUALLY PUSH THE AIR CYLINDER ROD TO THE FULL “DOWN” POSITION IMMEDIATELY.** This will cause the mechanical gas valve to shut the gas line off.

   Open any doors and/or windows to clear the area of gaseous fumes, then correct the gas leak before proceeding any further.

7. If no gaseous odor exists, pilot light may be ignited at this time.
8. Reinstall side covers to gas valve housing. Make certain roll pin is positioned within both sides of the valve housing slot. Connect visual inspection seals (Part No. 197) on ANSUL type valves. See Figure 1.

9. Make certain the regulated release mechanism is cocked with lock bar in place.

**NOTICE**

If no other devices are being attached, proceed to Page 6-3, Step No. 1, and test the detection system.
TESTING ELECTRICAL GAS VALVES
To test each Electric Gas Shut-off Valve complete the following steps:

1. **CAUTION**
   
   To reduce the risk of explosion due to leaking gas, before the gas line is turned on, make certain to extinguish any open flames and turn off all burners and any electrical or mechanical devices that are capable of igniting gas.

2. Turn gas line on.
3. Make certain electric (snap-action) switch is properly wired.
4. Make certain all other devices connected to the manual reset relay are properly wired. Refer to typical wiring diagrams in Figures 106, 107, and 108 in “Design” section.
5. Test for gas leaks by painting connections with a soap solution. Bubbles indicate a gas leak. Tighten connections where leaks appear. Repeat test again to make certain no other gas leaks exist.
6. If no gas leaks are found, turn power source on and depress the reset button on the manual reset relay (RED LIGHT ON) to energize (OPEN) electric gas valve.
7. Remove lock bar from regulated release mechanism.
8. Keep burners for gaseous odor. IF GASEOUS ODOR EXISTS, TURN OFF POWER SOURCE IMMEDIATELY. This will cause the electric gas valve to shut off the gas line off. Open any doors and/or windows to clear the area of gaseous fumes, then correct the gas leak before proceeding any further.
9. If test is successful, recock regulated release mechanism using cocking lever (Part No. 14995) and reinstall lock bar (Part No. 14985). Depress reset button on manual reset relay (RED LIGHT ON).
10. If no gaseous odor exists, pilot light may be ignited at this time.

**NOTICE**

If no other devices are being attached, proceed to Page 6-3, Step No. 1, and test the detection system.

TESTING ELECTRIC SWITCH
The procedure for testing a field installed Electric (Snap-Action) Switch is as follows:

1. Turn power source on and if installed, depress reset button on manual reset relay (RED LIGHT ON). All electrical devices should be operating at this time.
2. Remove lock bar.
3. Manually actuate the system by operating the remote pull station. It may be necessary to remove the glass break rod prior to operating pull station. (If installed, the manual reset relay will de-energize the electric gas valve, thus shutting off the gas line.) All electrically-operated devices predetermined to shut off or turn on should do so. If this does not occur, turn power source off and make sure all wiring is properly connected and retest. Refer to Figures 106, 107, and 108 in “Design” section for typical wiring diagram.
4. If test is successful, recock regulated release mechanism using cocking lever (Part No. 14995) and reinstall lock bar (Part No. 14985). If a manual reset relay is installed, depress the reset button (RED LIGHT ON). It will also be necessary to re-light any pilot lights on the cooking appliances.

**NOTICE**

If no other devices are being attached, proceed to Page 6-3, Step No. 1, and test the detection system.

**CAUTION**

Do not install cartridge at this time or system may be actuated.

To reduce the risk of explosion due to leaking gas, before the gas line is turned on, make certain to extinguish any open flames and turn off all burners and any electrical or mechanical devices that are capable of igniting gas.

Do not install cartridge at this time or system may be actuated.

If an electrical gas shut-off valve is attached to system, perform proper test procedure for the gas valve first, before completing the following steps.

1. If no other devices are being attached, proceed to Page 6-3, Step No. 1, and test the detection system.
TESTING DETECTION SYSTEM

1. Test detection system by completing the following steps:
   a. Raise the regulated release mechanism tension lever to the “UP” position.
   b. Remove the fusible link from the terminal detector and install a test link (Part No. 15751). See Figure 2.
   c. Locate detector linkage and center in each bracket.
      For “clip on” style linkage, locate linkage in bracket slightly toward termination end of detection run.
      For “scissor” style linkage, locate linkage in bracket all the way toward termination end of detection run.
   d. Lower regulated release mechanism tension lever to “DOWN” position and remove lock bar.
   e. Using a wire cutter, cut the test link at the terminal detector to simulate automatic actuation.
   f. If system actuates successfully, go to Step 4.

2. If the regulated release mechanism does not actuate, check the following components and remedy any disorder as follows:
   a. Check the detector linkage for correct positioning.
   b. Check the wire rope for knotting or jamming.
   c. Check pulley elbows to see that wire rope is free and centered in pulley sheaves. If any evidence of pulley elbow deformation is found, replace the pulley elbow.
   d. Make certain that lock bar is removed.
   e. Make certain that regulated release mechanism is cocked.
   f. Make certain that tension lever is in “DOWN” position.

3. Re-test the system by completing the following steps:
   a. Make certain regulated release is cocked and lock bar is inserted.
   b. Raise the regulated release mechanism tension lever to the “UP” position.
   c. Install a new test link (Part No. 15751) on the terminal detector.
   d. Lower the regulated release mechanism tension lever to the “DOWN” position.
   e. Check for 1/4 in. (6.4 mm) minimum 3/8 in. (9.5 mm) maximum clearance between the trip hammer assembly and the cable lever assembly.
   f. Remove the lock bar.
   g. Using a wire cutter, cut the test link at the terminal detector to simulate automatic actuation.

4. Upon successful actuation of the system, complete the following steps:
   a. Raise tension lever to “UP” position and install a properly-rated fusible link in the terminal detector.
   b. Cock regulated release mechanism using cocking lever (Part No. 14995) and insert lock bar (Part No. 14985).
   c. Lower tension lever to “DOWN” position.
   d. Locate detector linkage and center in each bracket.
      For “clip on” style linkage, locate linkage in bracket slightly toward termination end of detection run.
      For “scissor” style linkage, locate linkage in bracket all the way toward termination end of detection run.
   e. Make certain the 1/4 in. (6.4 mm) minimum to 3/8 in. (9.5 mm) maximum clearance was maintained between the base of the trip hammer assembly and the cable lever assembly.

   NOTICE
   Reset any electrical equipment that may have been affected by the system actuation.
   f. Remove shipping cap and weigh each cartridge. Replace if weight is 1/2 ounce (14.2 g), or more, below weight stamped on cartridge.
   g. Install cartridge into the regulated release mechanism receiver and each regulated actuator receiver. Hand tighten firmly.
   h. Remove the lock bar.
   i. Install cover on regulated release assembly and each regulated actuator assembly and secure with appropriate fasteners or visual inspection seal. Insert seal (Part No. 197) in each upper and lower cover hole, if applicable. If system is install in an OEM enclosure, attach enclosure cover and secure with appropriate hardware or procedure.
   j. Record installation date on tag attached to unit and/or in a permanent file.
The recharge information listed in this section deals with the limitations and parameters of this pre-engineered system. Those individuals responsible for the recharge of the R-102 system must be trained and hold a current ANSUL certificate in an R-102 training program.

For continued fire protection, the R-102 restaurant fire suppression system must be recharged immediately after use. Recharge procedures for single, double, and multiple-tank systems are as follows.

CLEANUP PROCEDURES

Although there is no unusual cleanup procedure of ANSULEX or ANSULEX Low pH agents, due to the alkaline nature of these agents, they should be cleaned from kitchen surfaces within 24 hours after system discharge. The reaction from the wet chemical agent on cooking grease or oil produces a foamy bi-product that can be wiped up with a cloth or sponge. The following procedures should be followed:

1. The agent is non-toxic; however, food product and cooking grease/oil that has come in contact with the agent will no longer be suitable for human consumption and should be discarded.
2. Sponge up as much of the agent as possible using sponges or clean rags. Dispose of these sponges or rags in a local sanitary land fill site in accordance to local authorities. Note: Wear rubber gloves during cleanup as sensitive skin may become irritated. If the ANSULEX agent or its residue comes in contact with skin or eyes, flush thoroughly with clean water.
3. Using hot, soapy water and either a clean cloth or sponge, wipe away all foamy residue and thoroughly scrub all surfaces that have come in contact with the agent. Note: Wear rubber gloves during cleanup as sensitive skin may become irritated. If the ANSULEX agent or its residue comes in contact with skin or eyes, flush thoroughly with clean water.
4. After thoroughly cleaning all affected surfaces, adequately rinse and allow to completely dry before re-energizing the equipment.

RECHARGE

NOTICE

Determine the cause of system discharge and correct immediately before performing system recharge.

1. Remove the enclosure cover from the ANSUL AUTOMAN regulated release assembly and each regulated actuator assembly.
2. From tank in regulated release enclosure: Disconnect the expellant gas hose from each tank adaptor assembly.
   From tank in mounting bracket or mounting enclosure: Disconnect expellant gas piping union at each tank adaptor inlet line(s).
3. Disconnect distribution piping union at each tank adaptor outlet line(s).
4. From tank in enclosure: Remove tank.
   From tank in bracket assembly: Loosen wingnut, disengage bracket band, and remove each tank.
5. Remove each tank adaptor/tube assembly and complete the following:
   a. Remove O-ring and inspect for damage.
   b. Clean and coat O-ring with a good grade of extreme temperature grease and reinstall into adaptor groove. See Figure 1.
   c. Remove 1/4 in. vent plug.
   d. Clean and inspect for free movement and corrosion. Replace if necessary.
   e. Reinstall vent plug into adaptor body.

   CAUTION

Do not flush pipe with only water or other non-approved material, as this could cause internal corrosion, leading to possible improper discharge.

Piping system must be flushed to remove any wet chemical residue. To prepare the system for flushing:

a. Pour the complete contents of one 32-oz. bottle of ANSUL Flushing Concentrate (Part No. 79656) into an empty R-102 agent tank. One complete bottle is used for either size tank, the 1.5 gallon or the 3.0 gallon.

b. Fill the tank approximately half full with warm, clean water. Agitate the tank for a few seconds and then add more warm water to bring the fill level to within approximately 1 in. (2.5 cm) from the bottom of the fill opening.
RECHARGE (Continued)

c. Install adaptor/tube assembly and tighten.

7. To perform the flushing procedure, either secure heavy-duty plastic bags to each nozzle (See Figure 2) or remove each nozzle tip and strainer and attach plastic tubing, See Figure 3.
   If using plastic bags, secure bags and proceed to Step 9.
   If using plastic tubing, proceed to Step 8.

8. If using the plastic tubing option, utilize 1/2 in. (1.3 cm) O.D. plastic tubing with wall thickness not to exceed .062 in. (1.6 mm), and make certain it can withstand the pressures of at least 90 PSI (620.6 kPa) expelled during the flushing and blowdown procedures.
   Also required is a container with some means of securing tubing to it such as a five-gallon plastic pail and cover that snaps onto the pail.

To prepare the plastic tubing:
   a. Cut as many tubing lengths as required, making them long enough to reach the container from each nozzle outlet.
   b. Using a 1N nozzle tip and retainer, (Part No. 56930), slide a length of 1/2 in. (1.3 cm) plastic tubing over the rib on the nozzle tip and secure with a 1/2 in. (1.3 cm) adjustable hose clamp. See Figure 4. This nozzle tip will be connected to the nozzle body left installed in the distribution piping.
   c. In the pail cover, drill the number of holes required, large enough to insert 1/2 in. NPT fittings, with one additional hole that can be used for venting.
   d. Secure 1/2 in. compression fitting/threaded adaptors to the pail cover, using 1/2 in. conduit nuts. See Figure 4.
   e. Attach the tubing ends to the compression fittings. Tubing inserts will be required. See Figure 4.
   f. Install nozzle/tubing ends to nozzle bodies in discharge piping.
   g. Make certain each length of tubing is fastened to the pail cover with the cover snapped securely to the pail.

9. Complete the following steps in the flushing procedure:
   a. Connect discharge piping and expellant gas line to agent tank adaptor.
   b. Cock ANSUL AUTOMAN Release Mechanism and insert lock bar.
   c. Install LT-30-R Cartridge; hand tighten.
   d. Remove lock bar.
   e. If regulated actuators are included in the system, also install LT-30-R cartridges in them.
   f. Actuate system via pull station.
   g. Wash out all system nozzles and strainers in warm soapy water, rinse and return all nozzles and strainers to their appropriate locations in the discharge piping.
   h. Remove empty tank.
RECHARGE (Continued)

10. Fill each tank with 1.5 (5.8 L) or 3.0 (11.6 L) gallons of only ANSULEX Low pH Liquid Fire Suppressant. Note: Use a funnel with a screen to stop any foreign material from entering the tank. See Page 5-2-1, Figure 6, for detailed filling instructions.

11. Replace bursting disc, Part No. 416974, in adaptor assembly. Make certain silver side of disc is away from tank.

12. Replace adaptor/tube assembly and tighten into place. Return and secure each tank in regulated release assembly and mounting bracket/enclosure. Reconnect expellant gas and distribution piping as required.

13. Raise tension lever to “UP” position.

14. Cock regulated release mechanism using cocking lever (Part No. 14995) and install lock bar (Part No. 14985).

15. Remove empty cartridge from regulated release assembly and each regulated actuator assembly as required.

16. Install properly-rated fusible links in all detectors except the terminal detector.

   NOTICE
   If actuation was caused by a fire situation, all fusible links must be replaced.

17. Install test link (Part No. 15751) in terminal detector.

18. Lower tension lever to “DOWN” position.

19. Remove the lock bar.

20. Using wire cutter, cut the test link at the terminal detector to simulate automatic actuation.

   NOTICE
   If regulated release mechanism does not actuate, refer to Steps 2 and 3 of the “Testing Detection System” portion of the “Testing and Placing In Service” section, Page 6-3, of this manual.

21. After successful actuation, raise the tension lever to “UP” position.

22. Install properly-rated, ANSUL approved, fusible link in terminal detector.

23. Cock the regulated release mechanism and install lock bar (Part No. 14985).

24. Locate detector linkage and correctly position in each bracket.

25. Lower tension lever to “DOWN” position.

26. Inspect the base of the wire rope clamping device to make certain there is a minimum of 1/4 in. (6.4 mm) to a maximum of 3/8 in. (9.5 mm) clearance between the base of the trip hammer assembly and the cable lever assembly.

   NOTICE
   If clearance is not 1/4 in. (6.4 mm) minimum to a maximum of 3/8 in. (9.5 mm), raise tension lever to “UP” position, raise trip hammer 3/8-1/2 in. (9.5-12.7 mm), tighten set screws, and repeat Steps 25 and 26.

27. Remove lock bar.

28. Manually test the regulated release mechanism by operating the remote manual pull station.

29. Recock the regulated release mechanism and insert the lock bar.

30. Reset all devices which were affected by the system actuation. Refer to “Resetting” section, Page 7-3 and 7-4.

RESETTING
Resetting Remote Manual Pull Station
Metal Stamped Style
Reset each remote manual pull station by completing the following steps:

1. If necessary, remove set screw that is retaining the break glass rod.

2. If necessary, carefully remove any remaining broken glass from station.

3. Press and position ring handle in proper location against cover and slide the replacement glass break rod (Part No. 4834) through stud and handle.

4. Tighten set screw into stud.

5. If no other resetting is required, refer to “Cartridge Replacement,” Page 7-4, and complete steps 1 through 5.

Molded Plastic Style

1. Position pull ring in vertical groove of pull station cover.

2. Insert break-away seal, Part No. 79029, through holes in cover and snap in place.

   CAUTION
   Do not install replacement cartridge at this time or system may be actuated.
SECTION VII – RECHARGE AND RESETTING PROCEDURES

UL EX. 3470 ULC CEx747 Page 7-4
REV. 2 7-1-98

RESETTING (Continued)

Resetting Mechanical Gas Shut-Off Valve
Reset each mechanical gas shut-off valve by completing the following steps:

1. Remove side cover from gas valve housing.
2. Extend air cylinder rod to full "UP" position. Air cylinder is located inside the regulated release assembly enclosure.
3. Recock gas valve by pulling valve stem up so pin in stem engages in cocking lever.
4. Check burners for gaseous odor. IF GASEOUS ODOR EXISTS, MANUALLY PUSH THE AIR CYLINDER ROD TO THE FULL “DOWN” POSITION IMMEDIATELY. This will cause the mechanical gas valve to shut the gas line off.
Open any doors and/or windows to clear the area of gaseous fumes, then correct the gas leak before proceeding any further.
5. If no gaseous odor exists, pilot light may be ignited at this time.
6. Reinstall side cover to gas valve housing. On ANSUL type valve, make certain roll pin is positioned within both sides of the valve housing slot and secure visual inspection seal (Part No. 197).
7. If no other resetting is required, refer to “Cartridge Replacement,” Page 7-4, and complete steps 1 through 5.

Resetting Electrical Switch (Snap-Action)
Reset the electric (snap-action) switch by completing the following steps:

1. Make certain the power source is on.
2. Electric (snap-action) switch is reset automatically when the regulated release mechanism is recocked.
3. If no other resetting is required, refer to “Cartridge Replacement,” Page 7-5, and complete steps 1 through 5.

Resetting Electrical Gas Shut-Off Valve
Reset each electric gas shut-off valve by completing the following steps:

1. Make certain the power source is on.
2. Depress reset button on manual reset relay (red light on). Gas valve will resume its normal operating (open) position.
3. Check burners for gaseous odor. IF GASEOUS ODOR EXISTS, TURN OFF POWER SOURCE IMMEDIATELY. This will cause the electric gas valve to shut the gas line off.
Open any doors and/or windows to clear the area of gaseous fumes, then correct the gas leak before proceeding any further.
4. If no gaseous odor exists, pilot light may be ignited at this time.
5. If no other resetting is required, refer to “Cartridge Replacement,” Page 7-5, and complete steps 1 through 5.

Resetting Pressure Switch
Reset the pressure switch by completing the following:

1. Depress the reset button(s) on the pressure switch cover. The pressure switch assembly(ies) is located on the right side of the regulated release enclosure. An audible click will be heard to verify the pressure switch has resumed its normal (non-actuated) condition.
2. If no other resetting is required, refer to “Cartridge Replacement,” Page 7-5, and complete steps 1 through 5.

REPLACEMENT CARTRIDGE
To complete the recharge and resetting procedures:

1. Remove shipping cap and weigh replacement cartridge. Replace if weight is 1/2 ounce (14.2 g), or more, below weight stamped on cartridge.
2. Make certain regulated release mechanism is cocked and lock bar is installed. Then, install replacement cartridge into the regulated release assembly and each regulated actuator receiver and hand tighten.
3. Remove lock bar.
4. Snap cover on regulated release and each regulated actuator assembly, insert visual seal (Part No. 197) in upper and lower cover hole and secure.
5. Record recharge date on tag attached to unit and/or in a permanent file.
The maintenance information listed in this section deals with the limitations and parameters of this pre-engineered system. Those individuals responsible for the maintenance of the R-102 system must be trained and hold a current ANSUL certificate in an R-102 training program.

Maintenance is required semi-annually. At the 12 year interval, along with the normal maintenance exam, the tank(s) must be hydro-tested and the regulator(s) must be flow tested.

Prior to performing the required maintenance steps, verify that the design of the system protects all of the original hazards when first installed. Make certain no additional hazards (appliances) have been added.

**SEMI-ANNUAL MAINTENANCE EXAMINATION**

Semi-annual maintenance procedures for single, double, and multiple-tank systems are as follows.

**NOTICE**
Under certain circumstances hood and duct cleaning operations may render the fire suppression system ineffective due to a coating of cleaning chemical left on the detection equipment or mishandling of the system by cleaning service personnel. Therefore, it is strongly recommended that the R-102 system be completely inspected and serviced by an authorized ANSUL distributor immediately following any such cleaning operations.

1. Remove the enclosure cover from the ANSUL AUTOMAN regulated release assembly and each regulated actuator assembly.

2. Insert the lock bar (Part No. 14985) on the cocked regulated release mechanism. See Figure 1.

3. Remove cartridge from regulated release assembly and each regulated actuator assembly, install safety shipping cap, and set aside in a safe location.

4. Remove gasket from cartridge receiver in regulated release mechanism and each regulated actuator. Check gasket for elasticity or cuts and replace if necessary. Clean and coat gasket lightly with a good grade of extreme temperature grease. Reinstall gasket into cartridge receiver(s).

5. From tank in regulated release assembly: Disconnect the expellant gas hose from each tank adaptor assembly.

   From tank in bracket/enclosure assembly: Disconnect the expellant gas piping union at each tank adaptor inlet line.

6. Disconnect distribution piping union at each tank adaptor outlet line.

7. From tank in enclosure: Remove tank. Keep in upright position to avoid spilling the agent.

   From tank in bracket assembly: Loosen wingnut, disengage bracket band, and remove each tank. Keep tank in upright position to avoid spilling the agent.

8. Remove tank adaptor/tube assembly from each tank. See Figure 2.

9. Make certain that each tank is filled with 1.5 (5.8 L) or 3.0 (11.6 L) gallons of only ANSULEX Low pH Liquid Fire Suppressant. See Figure 3. See Page 5-2.1, Figure 6, for detailed filling tolerances.

10. Examine threads on each tank adaptor and tank collar for nicks, burrs, or cross-threading. Clean and coat O-ring with a good grade of extreme temperature grease. See Figure 3. Remove 1/4 in. vent plug and clean and inspect for free movement and corrosion (replace if necessary). Reinstall vent plug. Make certain bursting disc is in place and silver side is away from tank. Clean seating surface and return adaptor/tube assembly to each tank. Tighten securely.

11. Place fully charged tanks in enclosures and/or brackets and secure.

12. Carefully assemble and wrench tighten all expellant gas and agent distribution piping.

13. Remove blow-off caps from nozzles. Inspect each blow-off cap and replace if deteriorated. On metal blow-off caps, make certain spring clip rotates freely on cap.

**NOTICE**
Rubber blow-off caps that have been installed in the system for one year or more must be replaced.
14. Check all nozzles to ensure that they are free of cooking grease build-up and have a covering of clean silicone grease on the orifice. Reinstall blow-off caps.

**Note:** If there is any evidence of cooking grease in the nozzles or agent in the distribution piping, the entire piping network must be inspected and thoroughly cleaned. Portions of piping that cannot be thoroughly cleaned must be replaced.

15. Remove the lock bar and manually test the regulated release assembly by operating the remote manual pull station. Check pull station cover for damage or wear. Replace cover if cable has worn a groove in the cover as deep as the diameter of the cable.

16. Cock the regulated release mechanism using cocking lever (Part No. 14995). See Figure 4.

Before proceeding with Step 18, test electric (snap-action) switches:

a. With the ANSUL AUTOMAN in the cocked or ready position, press the lever of each switch up. If the switch is working properly, there should be an audible click.

b. With the ANSUL AUTOMAN in the fired position, press the lever of each switch up, there should be no audible click.

c. If an audible click is heard in the fired position several adjustments can be made. The trip lever extension pin can be rotated so the peak of one of the hex points is pointed up against the switch levers. Tighten it in that position. If this doesn’t resolve the problem, loosen the screws holding the switches, apply a small counterclockwise torque on the switches and retighten the screws. If necessary, a final adjustment can be made by removing the snap action switch and bending the lever slightly.

d. After adjustments, repeat Steps a. and b. Then, recock ANSUL AUTOMAN and insert lock bar.

17. Raise tension lever to “UP” position. See Figure 5.

18. Install test link (Part No. 15751) in terminal detector.

19. Lower tension lever to “DOWN” position. See Figure 6.

20. Using wire cutter, cut test link at terminal detector to simulate automatic actuation.

**NOTICE**

If regulated release mechanism does not activate, refer to Steps 2 and 3 of “Testing Detection System” in “Testing and Placing in Service,” Section 6, Page 6-3.

21. After successful actuation, raise the tension lever to “UP” position.

22. Clean and return properly-rated, ANSUL approved, fusible link to terminal detector.

**NOTICE**

Fusible links installed in system for six months or more must be replaced.
SEMI-ANNUAL MAINTENANCE EXAMINATION (Continued)

23. Remove, clean, and return additional fusible links to series detector linkage(s). (Fusible links loaded with grease and other extraneous material can result in excessive delays in actuation.)

24. Inspect wire rope at all detector locations, pulley elbows, pulley tee and at ANSUL AUTOMAN release. If wire rope shows signs of wear or fraying, replace entire length.

25. Lower the tension lever to “DOWN” position.

26. Recock the regulated release mechanism and insert the lock bar.

27. Inspect the base of the wire rope clamping device to make certain that there is a minimum of 1/4 in. (6.4 mm) and a maximum of 3/8 in. (9.5 mm) clearance between the base of the trip hammer assembly and the cable lever assembly. See Figure 7.

28. Locate detector linkage and properly position in each bracket. For “clip on” style linkage, locate linkage in bracket slightly toward termination end of detection run.

For “scissor” style linkage, locate linkage in bracket all the way toward termination end of detection run.

29. If a mechanical gas valve is installed, begin the test procedure by removing both side covers.

30. At the regulated release, push the air cylinder rod fully down.

31. The gas valve should operate.

32. Pull the air cylinder rod to its fully extended position.

33. Re-cock the gas valve by pulling the valve stem up until the pin in the stem engages the cocking lever.

34. Reinstall side covers on the gas valve and connect the visual indication seal.

35. Test pressure switch by completing Steps No. 1 through No. 9 on Page 6-3 in Section 6, “Testing and Placing In Service.”

36. Before reinstalling cartridge, reset all additional equipment by referring to appropriate section of “Recharge and Resetting Procedures,” Section 7.

37. Remove shipping cap and weigh each cartridge. Replace if weight is 1/2 ounce (14.2 g), or more, below weight stamped on cartridge.

38. Make certain regulated release mechanism is cocked and lock bar is installed, then screw replacement cartridge into regulated release mechanism and each regulated actuator receiver(s) and hand tighten.

39. Remove lock bar.

40. Snap cover on regulated release and each regulated actuator, insert visual seal (Part No. 197) through holes in cover and box, and secure.

41. Record semi-annual maintenance date on tag attached to unit and/or in a permanent file.
12-YEAR MAINTENANCE EXAMINATION

Twelve-year maintenance procedures for single, double, and multiple-tank systems are as follows.

NOTICE
Under certain circumstances, hood and duct cleaning operations may render your fire suppression system ineffective due to a coating of cleaning chemical left on the detection equipment or mishandling of the system by cleaning service personnel.

Therefore, it is strongly recommended that the R-102 system be completely inspected and serviced by an authorized ANSUL distributor immediately following any such cleaning operations.

At twelve-year intervals, the liquid agent tank(s) must be hydrostatically tested and refilled with a fresh charge of ANSULEX Low pH Liquid Fire Suppressant. The date of manufacture is stamped on the bottom of the agent tank.

1. Remove the enclosure cover from the ANSUL AUTOMAN regulated release assembly and each regulated actuator assembly.
2. Insert the lock bar (Part No. 14985) on the cocked regulated release mechanism. See Figure 8.

3. Remove cartridge from regulated release assembly and each regulated actuator assembly, install safety shipping cap, and set aside in a safe location.

4. Remove gasket from cartridge receiver in regulated release mechanism and each regulated actuator. Check gasket for elasticity or cuts and replace if necessary. Clean and coat gasket lightly with a good grade of extreme temperature grease. Reinstall gasket into cartridge receiver(s).
5. From tank in enclosure: Disconnect the expellant gas hose from each tank adaptor assembly. From tank in bracket assembly: Disconnect expellant gas piping union at each tank adaptor inlet line.
6. Disconnect distribution piping union at each tank adaptor outlet line.
7. From tank in enclosure: Remove tank. From tank in bracket assembly: Loosen wingnut, disengage bracket band, and remove each tank. Keep tank in upright position to avoid spilling the agent.
8. Loosen tank adaptor/tube assembly and remove.
9. Pour the liquid agent from the tank into a clean, plastic container, and flush tank with clear water.
10. At this point, each liquid agent tank, including the 1/4 in. gas hose assembly, must be HYDROSTATICALLY TESTED to 330 psi (2275 kPa). Refer to “Hydrastatic Test Instructions,” F-7602, for test adaptors and instructions. Verify date stamped on cartridge. The cartridge must be hydrotested at intervals not greater than 12 years. (European cartridges are not refillable, therefore cannot be hydrotested and refilled. They must be discarded.) If cartridge date indicates the need for hydrotesting, the cartridge must be bled down through normal ANSUL AUTOMAN release operation, returned to ANSUL for credit, and replaced with a charged, replacement cartridge.

NOTICE
Cartridge bleed down can be used to verify pneumatic accessories operation.

CAUTION
Safety glasses should be worn during transfer operations of ANSULEX Low pH Liquid Fire Suppressant. Avoid contact with skin or eyes. In case of contact, flush immediately with water for 15 minutes. If irritation persists, contact a physician. Do not take internally. If taken internally do not induce vomiting. Dilute with water or milk and contact a physician.

Do not reinstall cartridge at this time or system may be actuated.
12-YEAR MAINTENANCE EXAMINATION (Continued)

11. The regulator must be flow tested at 12 year intervals. Check the date code stamped on the regulator body to determine if the regulator(s) requires the 12 year testing (see data code table). If regulator does not require testing, proceed to step 12. Flow test the regulator(s) per the following:

Date Code Table

<table>
<thead>
<tr>
<th>Month</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>A</td>
</tr>
<tr>
<td>February</td>
<td>B</td>
</tr>
<tr>
<td>March</td>
<td>C</td>
</tr>
<tr>
<td>April</td>
<td>D</td>
</tr>
<tr>
<td>May</td>
<td>E</td>
</tr>
<tr>
<td>June</td>
<td>F</td>
</tr>
<tr>
<td>July</td>
<td>G</td>
</tr>
<tr>
<td>August</td>
<td>H</td>
</tr>
<tr>
<td>September</td>
<td>J</td>
</tr>
<tr>
<td>October</td>
<td>K</td>
</tr>
<tr>
<td>November</td>
<td>L</td>
</tr>
<tr>
<td>December</td>
<td>M</td>
</tr>
</tbody>
</table>

Year – Code

<table>
<thead>
<tr>
<th>Year</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1981</td>
<td>K</td>
</tr>
<tr>
<td>1982</td>
<td>L</td>
</tr>
<tr>
<td>1983</td>
<td>M</td>
</tr>
<tr>
<td>1984</td>
<td>N</td>
</tr>
<tr>
<td>1985</td>
<td>P</td>
</tr>
<tr>
<td>1986</td>
<td>R</td>
</tr>
<tr>
<td>1987</td>
<td>S</td>
</tr>
<tr>
<td>1988</td>
<td>T</td>
</tr>
<tr>
<td>1989</td>
<td>U</td>
</tr>
<tr>
<td>1990</td>
<td>V</td>
</tr>
<tr>
<td>1991</td>
<td>W</td>
</tr>
<tr>
<td>1992</td>
<td>Y</td>
</tr>
<tr>
<td>1993</td>
<td>Z</td>
</tr>
<tr>
<td>1994</td>
<td>A</td>
</tr>
<tr>
<td>1995</td>
<td>B</td>
</tr>
<tr>
<td>1996</td>
<td>C</td>
</tr>
<tr>
<td>1997</td>
<td>D</td>
</tr>
<tr>
<td>1998</td>
<td>E</td>
</tr>
<tr>
<td>1999</td>
<td>F</td>
</tr>
<tr>
<td>2000</td>
<td>G</td>
</tr>
<tr>
<td>2001</td>
<td>H</td>
</tr>
<tr>
<td>2002</td>
<td>J</td>
</tr>
<tr>
<td>2003</td>
<td>K</td>
</tr>
<tr>
<td>2004</td>
<td>L</td>
</tr>
<tr>
<td>2005</td>
<td>M or E</td>
</tr>
<tr>
<td>2006</td>
<td>F</td>
</tr>
<tr>
<td>2007</td>
<td>G</td>
</tr>
</tbody>
</table>

a. Regulated Release Mechanism
For First Tank: Disconnect expellant gas hose from tank. Connect regulator test kit (Part No. 56972) to hose. See Figure 9.

For Second Tank: Disconnect expellant gas piping at union. Remove union from expellant gas piping and install pipe cap to prevent cartridge pressure from escaping during test. See Figure 10.

Pressure Switch: If pressure switch is provided, it should remain connected as part of system maintenance test.

**NOTICE**
For multiple-tank systems, one test kit (Part No. 56972) is required for each regulator in the system.

b. Regulated Actuator
For First Tank: Disconnect expellant gas hose from tank. Connect regulator test kit (Part No. 56972) to hose. See Figure 11.
12-YEAR MAINTENANCE EXAMINATION (Continued)

For Second Tank: Disconnect expellant gas piping at union. Remove union from expellant gas piping and install pipe cap to prevent cartridge pressure from escaping during test. See Figure 12.

**NOTICE**

Make certain valve is **closed** on regulator test kit or pressure will escape before test can be performed.

c. Install either a nitrogen or CO₂ cartridge into release mechanism and each regulated actuator provided with the system. (Cartridge should be conditioned to approximately 70 °F (21 °C) before test.)

**NOTICE**

Before continuing with Step d, make certain valve on test kit is closed.

d. Remove lock bar and operate remote manual pull station to actuate the regulated release and supply pressure to each test kit.

Two styles of regulators are used with the R-102 release mechanisms. The diaphragm style (see Figure 13) was used in R-102 systems up to approximately 1988. The piston style (see Figure 13) has been used since 1988. Each style requires a slightly different flow test procedure. Use the appropriate flow test procedure as stated in Step e.

e. Flow test each regulator by completing the following steps:

**Diaphragm Style** – The correct pressure should read 90 to 110 psi (6.2 to 7.6 bar) with the valve on the test kit closed and 80 psi (5.5 bar) with the valve on the test kit opened. Keep the valve opened to completely empty the pressure cartridge after pressure test has been verified.

**Piston Style** – Open the valve on the regulator test kit. The correct pressure should read between 95 to 125 psi (6.6 to 8.6 bar). Keep the valve open to completely empty the pressure cartridge.

If necessary, continue to flow test at each additional regulated actuator. Test each regulated actuator by repeating Step e.

f. Cock release mechanism using cocking lever (Part No. 14995) and insert lock bar (Part No. 14985).

g. Remove empty nitrogen cartridge(s) from release mechanism and each regulated actuator.

h. Remove test kit(s) from release mechanism and each regulated actuator.

i. If regulator test was not successful, replace regulator.

j. Reconnect all expellant gas lines.

k. Reset all additional equipment that was operated by release mechanism.

12. Examine threads on each adaptor and tank collar for nicks, burrs, or cross-threading. Clean and coat O-ring with a good grade of extreme temperature grease. Make certain bursting disc is in place and silver side is away from tank. See Figure 14.
12-YEAR MAINTENANCE EXAMINATION (Continued)

13. Refill each tank with 1.5 (5.8 L) or 3.0 (11.6 L) gallons of only new ANSULEX Low pH Liquid Fire Suppressant. **Note:** Use a funnel with a screen to stop any foreign material from entering the tank. See Page 5-2.1, Figure 6, for detailed filling tolerances.

14. Clean seating surface and return each adaptor/tube assembly to tank. Firmly tighten.

**NOTICE**
Do not reinstall any tank at this time.

15. Remove blow-off caps from nozzles. Inspect each blow-off cap and replace if deteriorated. On metal blow-off caps, make certain spring clip rotates freely on cap.

**NOTICE**
Rubber blow-off caps that have been installed in the system for one year or more must be replaced.

16. Check all nozzles to ensure that they are free of cooking grease build-up and have a covering of clean silicone grease on the orifice. Reinstall blow-off caps.

17. Remove lock bar and manually test the regulated release assembly by operating the remote manual pull station.

18. Cock the regulated release mechanism using cocking lever (Part No. 14995). See Figure 15.

19. Raise the tension lever to “UP” position. See Figure 16.

20. Install test link (Part No. 15751) in terminal detector.

21. Lower tension lever to “DOWN” position. See Figure 17.

22. Using wire cutter, cut test link at terminal detector to simulate automatic actuation.

**NOTICE**

23. After successful actuation, raise the tension lever to “UP” position.

24. Clean and return properly-rated, ANSUL approved, fusible link to terminal detector.

**NOTICE**
- Fusible links installed in system for six months or more must be replaced.

25. Remove, clean, and return additional fusible links to series detector linkage(s). (Fusible links loaded with grease and other extraneous material can result in excessive delays in actuation.)
12-YEAR MAINTENANCE EXAMINATION (Continued)

26. Lower tension lever to “DOWN” position.
27. Recock the regulated release mechanism and insert lock bar.
28. Inspect the base of the wire rope clamping device to make certain that there is a minimum of 1/4 in. (6.4 mm) and a maximum of 3/8 in. (9.5 mm) clearance between the base of the trip hammer assembly and the cable lever assembly. See Figure 18.

> ![Figure 18](image)

- NOTICE
  If clearance is not between 1/4 in. (6.4 mm) or 3/8 in. (9.5 mm), raise tension lever to “UP” position, raise trip hammer 3/8-1/2 in. (9.5-12.7 mm), tighten set screws, and repeat Steps 26 and 28.

29. Locate detector linkage and properly position in each bracket.
30. Make certain additional devices have operated as intended.
31. Before reinstalling cartridge, reset all additional equipment by referring to appropriate section of “Recharge and Resetting Procedures,” Section 7.
32. Place each fully charged tank in enclosure and/or bracket and secure.
33. Reconnect all distribution piping and expellant gas piping unions as required. Wrench tighten.
34. Check each gas cartridge by removing shipping cap and weighing cartridge. Replace if weight is 1/2 ounce (14.2 g), or more, below weight stamped on cartridge.
35. Make certain regulated release mechanism is cocked and lock bar is installed, then screw replacement cartridge into regulated release mechanism and each regulated actuator receiver(s) and hand tighten.
36. Remove lock bar.

> 37. Install cover on regulated release assembly and each regulated actuator assembly and secure with appropriate fasteners or visual inspection seal. Insert seal (Part No. 197) in each upper and lower cover hole, if applicable. If system is installed in an OEM enclosure, attach enclosure cover and secure with appropriate hardware or procedure.

> 38. Record date of 12 year maintenance examination on tag attached to enclosure and/or in a permanent file.
### SYSTEM SELECTION GUIDE

**Note:** System options do not cover all conceivable variations. They are listed here as a general guideline to show the most common type arrangement for multiple systems. Based on certain system designs utilizing manifolding, non-manifolding, 3-tank systems, etc., other tank/cartridge combinations can be designed. The combinations below are based on 11 flow, 3.0 gallon tanks and 5 flow, 1.5 gallon tanks. More competitive designs may be available by utilizing 12 flow and 6 flow systems when appropriate.

<table>
<thead>
<tr>
<th>Total Flow No.*</th>
<th>Tank Quantity</th>
<th>Type of System</th>
<th>Type of Hardware</th>
<th>Carbon Dioxide Cartridge Required</th>
<th>Nitrogen Cartridge Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-5</td>
<td>1</td>
<td>Single</td>
<td>1.5 Gal. Reg. Release</td>
<td>101-10 (423439)</td>
<td>LT-20-R (423429)</td>
</tr>
<tr>
<td>12-16</td>
<td>2</td>
<td>Double</td>
<td>1.5 Gal. Reg. Release</td>
<td>101-30 (423443)</td>
<td>Double (423493)</td>
</tr>
<tr>
<td>23-27 (Optional)</td>
<td>3</td>
<td>Multiple</td>
<td>1.5 Gal. Reg. Release</td>
<td>101-10 (423439)</td>
<td>LT-20-R (423429)</td>
</tr>
<tr>
<td>28-33 (Optional)</td>
<td>3</td>
<td>Multiple</td>
<td>3.0 Gal. Reg. Release</td>
<td>N/A</td>
<td>Double (423493)</td>
</tr>
<tr>
<td>34-38</td>
<td>4</td>
<td>Multiple</td>
<td>1.5 Gal. Reg. Release</td>
<td>101-10 (423439)</td>
<td>LT-20-R (423435)</td>
</tr>
<tr>
<td>34-38 (Optional)</td>
<td>4</td>
<td>Multiple</td>
<td>1.5 Gal. Reg. Release</td>
<td>101-30 (423443)</td>
<td>Double (423493)</td>
</tr>
<tr>
<td>39-44 (Optional)</td>
<td>4</td>
<td>Multiple</td>
<td>3.0 Gal. Reg. Release</td>
<td>101-30 (423443)**</td>
<td>Double (423493)</td>
</tr>
<tr>
<td>45-49</td>
<td>5</td>
<td>Multiple</td>
<td>1.5 Gal. Reg. Release</td>
<td>101-30 (423443)</td>
<td>Double (423493)</td>
</tr>
<tr>
<td>45-49 (Optional)</td>
<td>5</td>
<td>Multiple</td>
<td>1.5 Gal. Reg. Release</td>
<td>101-10 (423439)</td>
<td>LT-20-R (423429)</td>
</tr>
</tbody>
</table>

* Based on 5 flow numbers for a 1.5 gal. system and 11 flow numbers for a 3.0 gal. system.

** If tanks are manifolded, only a “double tank” nitrogen cartridge (Part No. 423493) can be used.

*** If tanks are manifolded, either an LT-A-101-30 nitrogen cartridge (Part No. 423491) or a double tank cartridge (Part No. 423493) can be used.
### SYSTEM SELECTION GUIDE (Continued)

<table>
<thead>
<tr>
<th>Total Flow No.*</th>
<th>Tank Quantity</th>
<th>Type of System</th>
<th>Type of Hardware</th>
<th>Carbon Dioxide Cartridge Required</th>
<th>Nitrogen Cartridge Required</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.0 Gal. Additional Tank</td>
<td>N/A</td>
<td>LT-A-101-30 (423491)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.0 Reg. Actuator Double 3.0 Gal. Tank Box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56-60</td>
<td>6</td>
<td>Multiple</td>
<td>1.5 Gal. Reg. Release</td>
<td>101-30 (423443)</td>
<td>Double (423493)</td>
</tr>
<tr>
<td>67-71</td>
<td>7</td>
<td>Multiple</td>
<td>1.5 Gal. Reg. Release</td>
<td>101-10 (423439)</td>
<td>LT-20-R (423429)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2) 3.0 Gal. Reg. Actuator</td>
<td>N/A</td>
<td>(2) LT-A-101-30 (423491)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2) Double 3.0 Gal. Tank Box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>67-71 (Optional)</td>
<td>7</td>
<td>Multiple</td>
<td>Remote Mechanical Release</td>
<td>101-10 (423439)</td>
<td>-- --</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2) 3.0 Gal. Reg. Actuator</td>
<td>N/A</td>
<td>(2) LT-A-101-30 (423491)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2) Double 3.0 Gal. Tank Box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-77 (Optional)</td>
<td>7</td>
<td>Multiple</td>
<td>Remote Mechanical Release</td>
<td>101-10 (423439)</td>
<td>-- --</td>
</tr>
</tbody>
</table>

* Based on 5 flow numbers for a 1.5 gal. system and 11 flow numbers for a 3.0 gal. system.

** If tanks are manifolded, only a “double tank” nitrogen cartridge (Part No. 423493) can be used.

*** If tanks are manifolded, either an LT-A-101-30 nitrogen cartridge (Part No. 423491) or a double tank cartridge (Part No. 423493) can be used.
### SYSTEM SELECTION GUIDE (Continued)

<table>
<thead>
<tr>
<th>Total Flow No.*</th>
<th>Tank Quantity</th>
<th>Type of System</th>
<th>Type of Hardware</th>
<th>Carbon Dioxide Cartridge Required</th>
<th>Nitrogen Cartridge Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>78-82</td>
<td>8</td>
<td>Multiple</td>
<td>1.5 Gal. Reg. Release</td>
<td>101-30 (423443)</td>
<td>LT-30-R (423435)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.0 Gal. Additional Tank</td>
<td>N/A</td>
<td>(2) LT-A-101-30 (423491)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2) 3.0 Gal. Reg. Actuator</td>
<td>N/A</td>
<td>(2) LT-A-101-30 (423491)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2) Double 3.0 Gal. Tank Box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>78-82</td>
<td>8</td>
<td>Multiple</td>
<td>Remote Mechanical Release</td>
<td>101-10 (423439)</td>
<td>--</td>
</tr>
<tr>
<td>83-88</td>
<td>8</td>
<td>Multiple</td>
<td>Remote Mechanical Release</td>
<td>101-10 (423439)</td>
<td>--</td>
</tr>
<tr>
<td>89-99</td>
<td>9</td>
<td>Multiple</td>
<td>Remote Mech. Release</td>
<td>101-10 (423439)</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(3) Double 3.0 Gal. Tank Box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>89-93</td>
<td>9</td>
<td>Multiple</td>
<td>Remote Mechanical Release</td>
<td>101-10 (423439)</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.5 Gal. Additional Tank</td>
<td>101-20 (423441)</td>
<td>LT-30-R (423435)</td>
</tr>
<tr>
<td>94-99</td>
<td>9</td>
<td>Multiple</td>
<td>Remote Mechanical Release</td>
<td>101-10 (423439)</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.0 Gal. Additional Tank</td>
<td>101-20 (423441)</td>
<td>LT-30-R (423435)</td>
</tr>
</tbody>
</table>

* Based on 5 flow numbers for a 1.5 gal. system and 11 flow numbers for a 3.0 gal. system.

** If tanks are manifolded, only a “double tank” nitrogen cartridge (Part No. 423493) can be used.

*** If tanks are manifolded, either an LT-A-101-30 nitrogen cartridge (Part No. 423491) or a double tank cartridge (Part No. 423493) can be used.
SYSTEM SELECTION GUIDE (Continued)

<table>
<thead>
<tr>
<th>Total Flow No.*</th>
<th>Tank Quantity</th>
<th>Type of System</th>
<th>Type of Hardware</th>
<th>Carbon Dioxide Cartridge Required</th>
<th>Nitrogen Cartridge Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>100-110</td>
<td>10</td>
<td>Multiple</td>
<td>Remote Mech. Release 100-10 (423439)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) 3.0 Gal. Reg. Actuator N/A (3) LT-A-101-30 (423491)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-104</td>
<td>10</td>
<td>Multiple</td>
<td>Remote Mechanical Release 101-10 (423439)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-104</td>
<td>10</td>
<td>Multiple</td>
<td>Remote Mech. Release 101-10 (423439)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Optional)</td>
<td></td>
<td>(2) 3.0 Gal. Reg. Actuator N/A (2) LT-A-101-30 (423491)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105-110</td>
<td>10</td>
<td>Multiple</td>
<td>Remote Mechanical Release 101-10 (423439)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Based on 5 flow numbers for a 1.5 gal. system and 11 flow numbers for a 3.0 gal. system.
** If tanks are manifolded, only a "double tank" nitrogen cartridge (Part No. 423493) can be used.
*** If tanks are manifolded, either an LT-A-101-30 nitrogen cartridge (Part No. 423491) or a double tank cartridge (Part No. 423493) can be used.

Options are available up to a maximum of 15 tanks. Contact ANSUL Technical Services Department for detailed information.
## SYSTEM COMPONENT INDEX

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>Part No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ULC Also)</td>
<td></td>
<td>79493</td>
<td>OEM Regulated Mechanical Release Shipping Assembly Includes: Regulated Release Mechanism 1/4 in. Hose and Mounting Bracket</td>
</tr>
<tr>
<td>429856</td>
<td>Electric ANSUL AUTOMAN Regulated Release Shipping Assembly Includes: Regulated Release Mechanism with Solenoid and Switch in Stainless Steel Mounting Enclosure</td>
<td>418691</td>
<td>OEM Regulated Actuator Shipping Assembly Includes: Actuator and Regulator Hose Bracket</td>
</tr>
<tr>
<td>429850</td>
<td>Regulated Actuator Shipping Assembly Includes: Actuator and Regulator in Stainless Steel Mounting Enclosure</td>
<td>429878</td>
<td>3.0 Gallon Bracket Assembly (Bracket Only)</td>
</tr>
<tr>
<td>(ULC Also)</td>
<td></td>
<td>32381</td>
<td>101 Remote Release Assembly</td>
</tr>
<tr>
<td>429870</td>
<td>Stainless Steel Mounting Box Shipping Assembly Includes: Stainless Steel Mounting Box</td>
<td>418522</td>
<td>OEM Regulated Actuator Shipping Assembly Includes: Actuator and Regulator Hose</td>
</tr>
<tr>
<td>(ULC Also)</td>
<td></td>
<td>429862</td>
<td>3.0 Gallon Tank Shipping Assembly</td>
</tr>
<tr>
<td>429859</td>
<td>24 VDC Regulated Release Shipping Assembly Includes: 24 VDC ANSUL AUTOMAN II-C Release Mechanism in Stainless Steel Mounting Box</td>
<td>429864</td>
<td>1.5 Gallon Tank Shipping Assembly</td>
</tr>
<tr>
<td>(ULC)</td>
<td></td>
<td>56972</td>
<td>Regulator Test Kit Includes: Gauge, Hose and Valve Assembly</td>
</tr>
<tr>
<td>430299</td>
<td>3.0 Gallon Mechanical Release Shipping Assembly including: 429853 Mechanical Regulated Release Assembly 429862 3.0 Gallon Tank Assembly</td>
<td>79694</td>
<td>1.5 Gallon (5.8 L) Container of ANSULEX Low pH Liquid Fire Suppressant</td>
</tr>
<tr>
<td>430300</td>
<td>1.5 Gallon Mechanical Release Shipping Assembly including: 429853 Mechanical Regulated Release Assembly 429864 1.5 Gallon Tank Assembly</td>
<td>79372</td>
<td>3.0 Gallon (11.6 L) Container of ANSULEX Low pH Liquid Fire Suppressant</td>
</tr>
<tr>
<td>430309</td>
<td>3.0 Gallon Regulated Actuator Shipping Assembly including: 429850 Regulated Actuator Assembly 429862 3.0 Gallon Tank Assembly</td>
<td>423429</td>
<td>Cartridge Shipping Assembly (LT-20-R) (TC/DOT)</td>
</tr>
<tr>
<td>430316</td>
<td>1.5 Gallon Stainless Steel Enclosure Shipping Assembly including: 429870 Single Tank Mounting Box Assembly 429864 1.5 Gallon Tank Assembly</td>
<td>423435</td>
<td>Cartridge Shipping Assembly (LT-30-R) (TC/DOT)</td>
</tr>
<tr>
<td>430317</td>
<td>3.0 Gallon Stainless Steel Enclosure Shipping Assembly including: 429870 Single Tank Mounting Box Assembly 429862 3.0 Gallon Tank Assembly</td>
<td>423493</td>
<td>Cartridge Shipping Assembly (R-102 Double-Tank) (TC/DOT)</td>
</tr>
<tr>
<td>430324</td>
<td>6.0 Gallon Stainless Steel Enclosure Shipping Assembly including: 429872 Two Tank Mounting Box Assembly 429862 3.0 Gallon Tank Assembly (2)</td>
<td>423491</td>
<td>Cartridge Shipping Assembly (LT-A-101-30) (TC/DOT)</td>
</tr>
<tr>
<td>430332</td>
<td>3.0 Gallon Mounting Bracket Shipping Assembly including: 429878 3.0 Gallon Mounting Bracket Assembly 429862 3.0 Gallon Tank Assembly</td>
<td>423439</td>
<td>Cartridge Shipping Assembly (101-10) (TC/DOT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15850</td>
<td>Cartridge Shipping Assembly (101-10) (DOT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>423441</td>
<td>Cartridge Shipping Assembly (101-20) (TC/DOT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>423443</td>
<td>Cartridge Shipping Assembly (101-30) (TC/DOT)</td>
</tr>
<tr>
<td>419347</td>
<td>Nozzle Shipping Assembly (1W) Includes: 25 1W Nozzles (Part No. 419336) 25 Blow-Off Caps</td>
<td>419345</td>
<td>Nozzle Shipping Assembly (1/2N) Includes: 9 1/2N Nozzles (Part No. 419334) 9 Blow-Off Caps</td>
</tr>
</tbody>
</table>
**SYSTEM COMPONENT INDEX (Continued)**

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>Part No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>419346</td>
<td>Nozzle Shipping Assembly (1N)</td>
<td>417368</td>
<td>Terminal Detector Package (“Scissor”)</td>
</tr>
<tr>
<td>419349</td>
<td>Nozzle Shipping Assembly (3N)</td>
<td>415671</td>
<td>Pulley Elbows Shipping Assembly (Socket End) – to 700 °F (371 °C)</td>
</tr>
<tr>
<td>419348</td>
<td>Nozzle Shipping Assembly (2W)</td>
<td>423251</td>
<td>Pulley Elbows Shipping Assembly (Compression End) – to 700 °F (371 °C)</td>
</tr>
<tr>
<td>419350</td>
<td>Nozzle Shipping Assembly (230)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>419351</td>
<td>Nozzle Shipping Assembly (245)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>419352</td>
<td>Nozzle Shipping Assembly (260)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>418353</td>
<td>Nozzle Shipping Assembly (290)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>419354</td>
<td>Nozzle Shipping Assembly (2120)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>419344</td>
<td>Nozzle Shipping Assembly (1F)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>423572</td>
<td>Swivel Adaptor Shipping Assembly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>77695</td>
<td>Blow-Off Cap Shipping Assembly (Spare)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79745</td>
<td>Metal Blow-Off Cap Shipping Assembly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>415568</td>
<td>Metal Blow-Off Cap Shipping Assembly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>551265</td>
<td>Nozzle Aiming Device</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56837</td>
<td>Series Detector Package (“Clip-On”)</td>
<td>423253</td>
<td>Hood Seal Adaptor Shipping Assembly Includes: 6 Hood Seals</td>
</tr>
<tr>
<td>15373</td>
<td>Series Detector Package (“Hinged”)</td>
<td>13708</td>
<td>Gas Shut-off Equipment (Electrical 110 VAC, 60 Hz) Includes: Solenoid Valve – 1 in.</td>
</tr>
<tr>
<td>15375</td>
<td>Terminal Detector Package (“Hinged”)</td>
<td>13709</td>
<td>Gas Shut-off Equipment (Electrical 110 VAC, 60 Hz) Includes: Solenoid Valve – 1 1/2 in.</td>
</tr>
<tr>
<td>417369</td>
<td>Series Detector Package (“Scissor”)</td>
<td>13710</td>
<td>Gas Shut-off Equipment (Electrical 110 VAC, 60 Hz) Includes: Fluid Power Gas Valve – 2 in.</td>
</tr>
<tr>
<td>434480</td>
<td>Series Detector, Pack of 25 (“Scissor”)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
## SYSTEM COMPONENT INDEX (Continued)

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>17643</td>
<td>Gas Shut-off Equipment (Electrical 110 VAC, 60 Hz) Includes: Fluid Power Gas Valve – 3 in.</td>
</tr>
<tr>
<td>426151</td>
<td>Gas Shut-off Equipment (Electrical 110 VAC, 60 Hz) Includes: Relay – Manual Reset</td>
</tr>
<tr>
<td>423878</td>
<td>One Electric Switch (Field Mounted) Kit Includes: Electric Switch (SPDT), Mounting Hardware</td>
</tr>
<tr>
<td>423879</td>
<td>Two Electric Switch (Field Mounted) Kit Includes: 2 Electric Switches (SPDT), Mounting Hardware</td>
</tr>
<tr>
<td>423880</td>
<td>Three Electric Switch (Field Mounted) Kit Includes: 3 Electric Switches (SPDT), Mounting Hardware</td>
</tr>
<tr>
<td>423881</td>
<td>Four Electric Switch (Field Mounted) Kit Includes: 4 Electric Switches (SPDT), Mounting Hardware</td>
</tr>
<tr>
<td>428311</td>
<td>Alarm Initiating Switch Kit</td>
</tr>
<tr>
<td>55598</td>
<td>Gas Shut-off Equipment Mechanical (ANSUL) Includes: Mechanical Gas Valve – 3/4 in.</td>
</tr>
<tr>
<td>55601</td>
<td>Gas Shut-off Equipment Mechanical (ANSUL) Includes: Mechanical Gas Valve – 1 in.</td>
</tr>
<tr>
<td>55604</td>
<td>Gas Shut-off Equipment Mechanical (ANSUL) Includes: Mechanical Gas Valve – 1 1/4 in.</td>
</tr>
<tr>
<td>55607</td>
<td>Gas Shut-off Equipment Mechanical (ANSUL) Includes: Mechanical Gas Valve – 1 1/2 in.</td>
</tr>
<tr>
<td>55610</td>
<td>Gas Shut-off Equipment Mechanical (ANSUL) Includes: Mechanical Gas Valve – 2 in.</td>
</tr>
<tr>
<td>25937</td>
<td>Gas Shut-off Equipment Mechanical (ASCO) Includes: Mechanical Gas Valve – 2 1/2 in.</td>
</tr>
<tr>
<td>25938</td>
<td>Gas Shut-off Equipment Mechanical (ASCO) Includes: Mechanical Gas Valve – 3 in.</td>
</tr>
<tr>
<td>15733</td>
<td>Gas Shut-off Equipment Includes: Air Cylinder and Tube Assembly</td>
</tr>
<tr>
<td>4835</td>
<td>Remote Manual Pull Station – Metal Stamped Includes: Remote Manual Pull Station Assembly 50 Ft. (15 m) of Wire Rope</td>
</tr>
<tr>
<td>24915</td>
<td>Break Rod Package Includes: 10 Glass Break Rods (Part No. 4834) (Replacement)</td>
</tr>
<tr>
<td>427074</td>
<td>Trim Rings (Pack of 10)</td>
</tr>
<tr>
<td>31809</td>
<td>16 in. (41 cm) Stainless Steel Actuation Hose</td>
</tr>
<tr>
<td>32335</td>
<td>20 in. (51 cm) Stainless Steel Actuation Hose</td>
</tr>
<tr>
<td>32336</td>
<td>24 in. (61 cm) Stainless Steel Actuation Hose</td>
</tr>
<tr>
<td>430815</td>
<td>42 in. (107 cm) Stainless Steel Actuation Hose</td>
</tr>
<tr>
<td>423429</td>
<td>Recharge Equipment Includes: LT-20-R Cartridge</td>
</tr>
<tr>
<td>423435</td>
<td>Recharge Equipment Includes: LT-30-R Cartridge</td>
</tr>
<tr>
<td>423493</td>
<td>Recharge Equipment Includes: Double System Cartridge</td>
</tr>
<tr>
<td>423439</td>
<td>Recharge Equipment Includes: 101-10 Cartridge</td>
</tr>
<tr>
<td>423441</td>
<td>Recharge Equipment Includes: 101-20 Cartridge</td>
</tr>
<tr>
<td>423443</td>
<td>Recharge Equipment Includes: 101-30 Cartridge</td>
</tr>
<tr>
<td>79372</td>
<td>Recharge Equipment Includes: 3.0 Gallon (11.4 L) Container of ANSULEX Low pH Liquid Fire Suppressant</td>
</tr>
<tr>
<td>79694</td>
<td>Recharge Equipment Includes: 1.5 Gallon (5.7 L) Container of ANSULEX Low pH Liquid Fire Suppressant</td>
</tr>
<tr>
<td>417911</td>
<td>Recharge Equipment Includes: Package of 10 Tank Adaptor Bursting Discs</td>
</tr>
<tr>
<td>77695</td>
<td>Recharge Equipment Includes: 50 Blow-Off Caps</td>
</tr>
<tr>
<td>24916</td>
<td>Recharge Equipment Includes: 10 Test Links (Part No. 15751)</td>
</tr>
<tr>
<td>415739</td>
<td>Recharge Equipment Includes: Fusible Link 165 °F (74 °C)</td>
</tr>
<tr>
<td>415740</td>
<td>Recharge Equipment Includes: Fusible Link 212 °F (100 °C)</td>
</tr>
<tr>
<td>415744</td>
<td>Recharge Equipment Includes: 25 Fusible Links 280 °F (138 °C) (Part No. 415741)</td>
</tr>
<tr>
<td>415745</td>
<td>Recharge Equipment Includes: 25 Fusible Links 360 °F (182 °C) (Part No. 415742)</td>
</tr>
<tr>
<td>415746</td>
<td>Recharge Equipment Includes: 25 Fusible Links 450 °F (232 °C) (Part No. 415743)</td>
</tr>
<tr>
<td>73867</td>
<td>Recharge Equipment Includes: 25 Fusible Links 500 °F (260 °C) (Part No. 56816)</td>
</tr>
</tbody>
</table>
### SYSTEM COMPONENT INDEX (Continued)

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>79651</td>
<td>Recharge Equipment</td>
</tr>
<tr>
<td></td>
<td>Includes: Detector Bracket – “Clip-On”</td>
</tr>
<tr>
<td>53771</td>
<td>Recharge Equipment</td>
</tr>
<tr>
<td></td>
<td>Includes: Detector Linkage – “Clip-On”</td>
</tr>
<tr>
<td>79651</td>
<td>Recharge Equipment</td>
</tr>
<tr>
<td></td>
<td>Includes: Detector Bracket – “Scissor”</td>
</tr>
<tr>
<td>415817</td>
<td>Recharge Equipment</td>
</tr>
<tr>
<td></td>
<td>Includes: Detector Linkage – “Scissor”</td>
</tr>
<tr>
<td>15344</td>
<td>Recharge Equipment</td>
</tr>
<tr>
<td></td>
<td>Includes: Detector Bracket – “Hinged”</td>
</tr>
<tr>
<td>15343</td>
<td>Recharge Equipment</td>
</tr>
<tr>
<td></td>
<td>Includes: Detector Bracket Linkage – “Hinged”</td>
</tr>
<tr>
<td>14985</td>
<td>Recharge Equipment</td>
</tr>
<tr>
<td></td>
<td>Includes: Lock Bar</td>
</tr>
<tr>
<td>14995</td>
<td>Recharge Equipment</td>
</tr>
<tr>
<td></td>
<td>Includes: Cocking Lever</td>
</tr>
<tr>
<td>26310</td>
<td>Recharge Equipment</td>
</tr>
<tr>
<td></td>
<td>Includes: Cocking Lever for ANSUL AUTOMAN II-C</td>
</tr>
<tr>
<td>15618</td>
<td>Recharge Equipment</td>
</tr>
<tr>
<td></td>
<td>Includes: Cocking Lever and Lock Bar Assembly</td>
</tr>
<tr>
<td>15240</td>
<td>Recharge Equipment</td>
</tr>
<tr>
<td></td>
<td>Includes: 500 °F (260 °C) Exhaust Duct Thermometer</td>
</tr>
<tr>
<td>197</td>
<td>Recharge Equipment</td>
</tr>
<tr>
<td></td>
<td>Includes: Lead and Wire Seal</td>
</tr>
<tr>
<td>418087</td>
<td>Recharge Equipment</td>
</tr>
<tr>
<td></td>
<td>Includes: Installation Manual</td>
</tr>
</tbody>
</table>
# "ANSUL AUTOMAN" REGULATED RELEASE ASSEMBLY

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Description</th>
<th>Mechanical Part No.</th>
<th>Electrical Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>–</td>
<td>Regulated Release Shipping Assembly</td>
<td>429853</td>
<td>429856</td>
</tr>
<tr>
<td>1</td>
<td>Mounting Box</td>
<td>419293</td>
<td>419293</td>
</tr>
<tr>
<td>2</td>
<td>Basic Release w/Regulator</td>
<td>79140</td>
<td>–</td>
</tr>
<tr>
<td>3</td>
<td>Basic Release w/Solenoid, Switch, and Regulator</td>
<td>79288</td>
<td>–</td>
</tr>
<tr>
<td>4</td>
<td>Self-Tapping Screw</td>
<td>71342</td>
<td>71342</td>
</tr>
<tr>
<td>5</td>
<td>Spacer</td>
<td>76555</td>
<td>76555</td>
</tr>
<tr>
<td>6</td>
<td>Tension Spring</td>
<td>79094</td>
<td>79094</td>
</tr>
<tr>
<td>7</td>
<td>Lever and Bracket Assembly</td>
<td>79300</td>
<td>79300</td>
</tr>
<tr>
<td>8</td>
<td>Machine Screw</td>
<td>14973</td>
<td>14973</td>
</tr>
<tr>
<td>9</td>
<td>Lockwasher</td>
<td>7310</td>
<td>7310</td>
</tr>
<tr>
<td>10</td>
<td>Hex Nut</td>
<td>14732</td>
<td>14732</td>
</tr>
<tr>
<td>11</td>
<td>Caution Label</td>
<td>57652</td>
<td>57652</td>
</tr>
<tr>
<td>12</td>
<td>Gasket</td>
<td>181</td>
<td>181</td>
</tr>
<tr>
<td>13</td>
<td>Expellant Gas Cartridge Assembly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>LT-30-R/101-20 (Ordered Separately)</td>
<td>423435/423441</td>
<td>423435/423441</td>
</tr>
<tr>
<td>15</td>
<td>Double Tank/101-30 (Ordered Separately)</td>
<td>423493/423443</td>
<td>423443/423443</td>
</tr>
<tr>
<td>16</td>
<td>Safety Shipping Cap</td>
<td>77251</td>
<td>77251</td>
</tr>
<tr>
<td>17</td>
<td>Tank Assembly 1.5/3.0 Gal. (Ordered Separately)</td>
<td>429864/429862</td>
<td>429864/429862</td>
</tr>
<tr>
<td>18</td>
<td>Hose Assembly</td>
<td>79007</td>
<td>79007</td>
</tr>
<tr>
<td>19</td>
<td>Enclosure Cover (Includes Label)</td>
<td>423744</td>
<td>423744</td>
</tr>
<tr>
<td>20</td>
<td>(Ordered Separately)</td>
<td>–</td>
<td>423575</td>
</tr>
<tr>
<td>21</td>
<td>Electric Snap-Action Switch</td>
<td>–</td>
<td>423878</td>
</tr>
<tr>
<td>22</td>
<td>Solenoid Assembly</td>
<td>–</td>
<td>423575</td>
</tr>
<tr>
<td>23</td>
<td>Cover Screw</td>
<td>15362</td>
<td>15362</td>
</tr>
<tr>
<td>24</td>
<td>Speed Nut</td>
<td>423479</td>
<td>423479</td>
</tr>
</tbody>
</table>
### REGULATED ACTUATOR ASSEMBLY

**Figure No.**  Description                                      **Part No.**
---                       -----------------------------------------------  -------------------------
1                         Regulated Actuator Assembly                      429850
2                         Mounting Box                                    419293
3                         Pneumatic Actuator Assembly Including Regulator   79340
4                         Hex Jam Nut                                    67990
5                         Hole Adaptor (2)                                423277
6                         Lockwasher                                     69521
7                         Gasket                                         181
8                         Expellant Gas Cartridge Assembly
                         LT-20-R/101-10 *(Ordered Separately)*                   423429/423439
                         LT-30-R/101-20 *(Ordered Separately)*                   423435/423441
                         Double Tank/101-30 *(Ordered Separately)*            423493/423443
                         LT-A-101-30/101-30 *(Ordered Separately)*              423491/423443
9                         Safety Shipping Cap                              77251
10                        Label                                          426953
11                        Tank Assembly 1.5/3.0 Gal. *(Ordered Separately)*  429864/429862
12                        Hose Assembly                                   79007
13                        Enclosure Cover (Without Labels)                    419294
14                        Cover Screw                                     15362
15                        Speed Nut                                      423479
ENCLOSURE ASSEMBLY

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Description</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>–</td>
<td>Enclosure Shipping Assembly</td>
<td>429870</td>
</tr>
<tr>
<td>1</td>
<td>Enclosure</td>
<td>419295</td>
</tr>
<tr>
<td>2</td>
<td>Cover</td>
<td>419296</td>
</tr>
<tr>
<td>3</td>
<td>Nameplate</td>
<td>429871</td>
</tr>
<tr>
<td>4</td>
<td>Screw</td>
<td>15362</td>
</tr>
<tr>
<td>5</td>
<td>Speed Nut</td>
<td>423479</td>
</tr>
</tbody>
</table>
## Bracket Assembly

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>–</td>
<td>Bracket Shipping Assembly</td>
<td>429878</td>
</tr>
<tr>
<td>1</td>
<td>Bracket Assembly</td>
<td>429878</td>
</tr>
<tr>
<td>2</td>
<td>Grommet</td>
<td>14089</td>
</tr>
<tr>
<td>3</td>
<td>Grommet</td>
<td>8688</td>
</tr>
<tr>
<td>4</td>
<td>Wing Nut</td>
<td>12065</td>
</tr>
</tbody>
</table>

3.0 Gallon
## TANK ASSEMBLY

![Tank Assembly Diagram]

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Description</th>
<th>Part No. 1.5 Gallon</th>
<th>Part No. 3.0 Gallon</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-9</td>
<td>Tank Assembly</td>
<td>429864</td>
<td>429862</td>
</tr>
<tr>
<td>1</td>
<td>Tank Adaptor Shipping Assembly</td>
<td>430096</td>
<td>79522</td>
</tr>
<tr>
<td>2</td>
<td>Pickup Tube Assembly</td>
<td>429883</td>
<td>417700</td>
</tr>
<tr>
<td>3</td>
<td>Vent Plug Assembly</td>
<td>74247</td>
<td>74247</td>
</tr>
<tr>
<td>4</td>
<td>O-Ring</td>
<td>56909</td>
<td>56909</td>
</tr>
<tr>
<td>5</td>
<td>Union Nut</td>
<td>417705</td>
<td>417705</td>
</tr>
<tr>
<td>6</td>
<td>Union Tail Piece</td>
<td>417706</td>
<td>417706</td>
</tr>
<tr>
<td>7</td>
<td>Burst Disc</td>
<td>416974</td>
<td>416974</td>
</tr>
<tr>
<td>8</td>
<td>Shell</td>
<td>429861</td>
<td>429860</td>
</tr>
<tr>
<td>9</td>
<td>Nameplate</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>
REMOTE RELEASE

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Remote Release</td>
<td>433485</td>
</tr>
<tr>
<td>1</td>
<td>Mounting Box</td>
<td>419295</td>
</tr>
<tr>
<td>2</td>
<td>Cover</td>
<td>419296</td>
</tr>
<tr>
<td>3</td>
<td>Maintenance Label</td>
<td>17351</td>
</tr>
<tr>
<td>4</td>
<td>Spring</td>
<td>79094</td>
</tr>
<tr>
<td>5</td>
<td>Speed Nut</td>
<td>423479</td>
</tr>
<tr>
<td>6</td>
<td>Machine Screw</td>
<td>14973</td>
</tr>
<tr>
<td>7</td>
<td>Hex Nut</td>
<td>14732</td>
</tr>
<tr>
<td>8</td>
<td>Lockwasher</td>
<td>7310</td>
</tr>
<tr>
<td>9</td>
<td>101 Release</td>
<td>433702</td>
</tr>
<tr>
<td>10</td>
<td>Spacer</td>
<td>76555</td>
</tr>
<tr>
<td>11</td>
<td>Screw</td>
<td>71342</td>
</tr>
<tr>
<td>12</td>
<td>Cover Screw</td>
<td>15362</td>
</tr>
<tr>
<td>13</td>
<td>Tension Lever and Bracket Assembly</td>
<td>79300</td>
</tr>
<tr>
<td>14</td>
<td>Gasket</td>
<td>181</td>
</tr>
<tr>
<td>15</td>
<td>101 Cartridge (Order Separately) (Not Shown)</td>
<td>(TC/DOT) 423439</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(DOT) 15850</td>
</tr>
</tbody>
</table>
Multiple Nozzle Fryer Protection Calculation Examples

Example No. 1 – Donut Fryer Without Dripboard. This fryer has a frypot that measures 26 in. in depth x 28 in. in length (66 x 71 cm). Because the frypot exceeds the maximum dimensions for one nozzle, multiple nozzles will be required.

Procedure: Find the area of the fryer by multiplying the 26 in. depth x the 28 in. length (66 x 71 cm) which equals 728 sq. in. (4697 sq. cm). Using the 3N nozzle (approved for fryers with the longest side of 25 3/8 in. (64 cm) and a maximum of 370.5 sq. in. (2390 sq. cm) in area), divide the total area of 728 sq. in. (4697 sq. cm) by 370.5 sq. in. (2390 sq. cm) to find the number of nozzles needed. 728 sq. in. (4697 sq. cm) divided by 370.5 sq. in. (2390 sq. cm) per nozzle = 2 nozzles required. Then verify the maximum longest side dimension of 25 3/8 in. (64 cm). Doing this will require doubling the 3N nozzles to = a total of 4 nozzles, if we are to protect the 26 in. (66 cm) depth and the 28 in. (71 cm) length of the fryer with this 3N nozzle option. See Figure 1.

Using the same process, but utilizing the 3N nozzle approved for fryer protection with the longest side of 27 5/8 in. (70 cm) and the maximum of 324 sq. in. (2090 sq. cm) in area, the calculation will change to 728 sq. in. (4697 sq. cm) divided by 324 sq. in. (2090 sq. cm) per nozzle = 3 nozzles. Because this 3N nozzle option will protect 27 5/8 in. (70 cm) on the longest side, it will protect the 26 in. (66 cm) side in this example, thus eliminating the need for extra nozzles. Utilizing this option, in this example, will require a total of 9 flows, but allows less nozzles and less nozzle drops*. See Figure 1.

*Note: 2-flow appliance nozzles can also be used. This option requires a total of 4 nozzles (728 sq. in. divided by 210 sq. in. per nozzle = 4 nozzles, or 8 total flows). Using this option requires that the nozzles be placed over each quadrant of frypot area protected and aimed to the center of the modules. This option may be desirable if minimizing total system flows is important.

Example No. 2 – Fryer With Dripboard. This fryer has an overall fry vat, including a dripboard, that measures 24 in. (61 cm) in depth x 20 in. (51 cm) in length. The actual frypot measures 20 in. x 20 in. (51 cm x 51 cm). Because both the frypot and the overall fry vat including the dripboard exceed the maximum dimensions for one nozzle, multiple nozzles will be required.

Procedure: Divide the fryer cooking area from left to right or from front to back into modules that do not exceed single nozzle area limitations and longest side limitations as described in the table for “Fryer Multiple Nozzle Protection” located in the Design Section.

The example fryer can either be divided from left to right into two modules, each measuring 10 in. x 24 in. (25.4 cm x 61 cm), or it can be divided from front to back. See Figure 2.

If the fryer is divided from front to back, two 2-flow nozzles may be adequate. To determine this, first protect as much of the rear portion of the vat (the frypot area) that is allowed with 2-flow appliance nozzles using the maximum area of 210 sq. in. (1355 sq. cm) per nozzle with the maximum longest side of 21 in. (53 cm) for multiple nozzles. See Figure 2.

In the example, the frypot is 20 in. (51 cm) from side to side. Use the maximum area of 210 sq. in. (1355 sq. cm) allowed for one nozzle and divide it by 20 in. (51 cm), a total of 10 1/2 in. (27 cm) of the frypot can be protected with one 2-flow nozzle (210 sq. in. divided by 20 in. = 10.5 in.). See Figure 2.

This leaves the remainder of 9 1/2 in. (24 cm) of frypot and the entire dripboard yet to protect. One 2-flow appliance nozzle will protect up to 10 1/2 in. (27 cm) of frypot, therefore, there is no need to verify the remaining 9 1/2 in. (24 cm). There is only the overall of 9 1/2 in. (24 cm) remaining plus the dripboard to verify.

The dripboard measures 4 in. x 20 in. (10 cm x 51 cm), with an overall remainder of frypot + dripboard area size of 13 1/2 in. x 20 in. (34 cm x 51 cm) = 270 sq. in. (1742 sq. cm). Reviewing the "Multiple Nozzle Fryer Table," a 2-flow appliance nozzle can protect an area, including dripboard, of 294 sq. in. (1897 sq. cm) with a longest side of 21 in. (53 cm). Because the area is less than the maximum of 294 sq. in. (1897 sq. cm) and the longest side is less than the maximum of 21 in. (53 cm), a 2-flow nozzle will be sufficient. See Figure 2.

Adding the protection required for the back of the frypot to the front protection requires two 2-flow appliance nozzles as a minimum. See Figure 2.